Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{2021}+7^{2020}-7^{2019}=7^{2019}.7^2+7^1.7^{2020}-7^{2019}.1\)
\(=7^{2019}\left(7^2+7-1\right)=7^{2019}\left(49+7-1\right)=7^{2019}.55\)
Mà \(55⋮11\Leftrightarrow7^{2019}.55⋮11\)
Vậy \(7^{2021}+7^{2020}-7^{2019}⋮11\)
a) 4\(^{2019}\)+ 1 = 4\(^{2016}\). 4\(^3\)+ 1 = ...6 . 64 + 1 = ....4 + 1 = ....5 \(⋮\) 5
(các số tận cùng là 4 khi nâng lũy thừa bậc 4n đều có chữ số tận cùng là 6)
a/ 4^2019 + 1
= (4^2)^1009 x 4 + 1
= (.....6)^1009 x 4 + 1
= .....6 x 4 + 1
= ......4 + 1
= .....5
Vì 4^2019 + 1 có tận cùng là 5
Suy ra 4^2019 + 1 chia hết cho 5
Vậy 4^2019 + 1 chia hết cho 5
b/ 5^2017 + 1
= ( 5^2 ) ^1008 x 5 + 1
= 25^1008 x 5 + 1
hay = 25.25.25....25 x 5 + 1 ( có tất cả 1008 thừa số 25 ) ......... Tự làm nha!
\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+12n-35\)
\(=12n-36=12\left(n-3\right)\) chia het cho 12
\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+12n-35\)
\(=12n-36=12\left(n-3\right)\) chia het cho 12
10.
\(H\left(x\right)=-5x^4+10x^3-15x+1\)
\(=-5x\left(x^3-2x^2+3\right)+1\)
\(=-5x.0+1\)
\(=1\)
9.
\(P\left(x\right)-Q\left(x\right)=\left(1-a\right)x^3+x^2+x-6\)
\(P\left(x\right)-Q\left(x\right)\) là đa thức bậc 3 khi và chỉ khi \(1-a\ne0\)
\(\Rightarrow a\ne1\)
Cho a, b \(\in\)z và a ko chia hết cho 2, 3, 5. Cm: a4 - b4 chia hết cho 30
Giải giúp mình nha!!!!!!!