Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\overline{20x5}\) \(⋮\) 9 ⇔ 2 + 0 + 5 + \(x\) ⋮ 9 ⇔ \(x\) + 2 ⋮ 9 ⇒ \(x\) = 7
Vậy \(x=7\)
b, \(\overline{x998y}\) \(⋮\) 2; 3 và 5
\(\overline{x998y}\) \(⋮\) 2 và 5 ⇔ \(y\) = 0
\(\overline{x998y}\) \(⋮\) 3 ⇔ \(x+9+9+8\) +y ⋮ 3 ⇒ \(x\) + 2 ⋮ 3 ⇒ \(x\) = 1; 4; 7
Vậy các cặp \(x;y\) thỏa mãn đề bài lần lượt là:
(\(x;y\)) =(1; 0); (4; 0); (7; 0)
c, \(\overline{87xy}\) \(⋮\) 9 ⇔ 8 + 7 + \(x+y\) ⋮ 9 ⇒ \(x+y\) + 6 ⋮ 9
\(x-y=4\) ⇒ \(x=4+y\). Thay \(x\) = 4 + y vào biểu thức \(x+y+6\)⋮9
ta có: 4+\(y+y\) +6 \(⋮\) 9 ⇒ 1 + 2⋮ 9 ⇒ 2\(y\) = 8⇒ y =4; \(x\) = 4+4 =8
Vậy \(x=8;y=4\)
Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)
\(y-3x=2\)\(\Rightarrow\)\(y+2=3x\) (2)
Thay (2) vào (1) ta có:
\(5\left(x+2\right)=\left(y+2\right)+8\)
\(5x+10=3x+8\)
\(5x-3x=8-10\)
\(2x=-2\)
\(x=-2:2\)
\(x=-1\)
Vậy: x=-1
Chúc bạn làm bài tốt!
Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.
cái này dùng phân số trung gian thôi
-313/370 < -313/371 < -314/371
nên -313/370 < -314/371
các câu sau tương tự
Theo tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+y+2+x+y-3+1}{x+y+z+x+y+z}\)
=\(\frac{\left(x+y+z\right)+\left(x+y+y1+2-3\right)}{\left(x+y+z\right)+\left(x+y+z\right)}=\frac{\left(x+y+z\right)+\left(x+y+y+1\right)}{\left(x+y+z\right)+\left(x+y+z\right)}\)
=>x+y+y+1=x+y+z
=>y+1=z
Vậy đáp số cần tìm là x,y,z khác 0
x tùy ý
y tùy ý
z=y+1
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
Muốn tạo số chia hết cho 4 thì 2 chữ số tận cùng phải chia hết cho 4
Gọi các số cần tìm có dạng \(\overline{abc}\left(a,b,c\in N;0< a< 10;0\le b,c< 10\right)\)
Mà \(\overline{abc}⋮4\Rightarrow\overline{bc}\in\left\{00;04;12;16;20;24;40;44;60;64\right\}\)
Với mỗi cặp \(\overline{bc}\) ta có \(a\in\left\{1;2;4;6\right\}\left(4\text{ cách chọn}\right)\)
Vậy có thể tạo \(4\cdot10=40\) số thỏa yêu cầu đề
Ta phải giả sử x,y,z khác 0
gt: (yc-bz)/x=(za-xc)/y =>
(c/z-b/y)/zx^2=(a/x-c/z)/zy^2 hay:
(c/z-b/y)/x^2=(a/x-c/z)/y^2 (*)
mặt khác từ gt:
(yc-bz)/x=(xb-ya)/z =>
(c/z-b/y)/yx^2=(b/y-a/x)/yz^2 hay:
(c/z-b/y)/x^2=(b/y-a/x)/z^2 (**)
*nếu: c/z-b/y>0
<=>c/z>b/y
Theo (*) ta có:
a/x-c/z>0
<=>a/x>c/z
=>a/x>c/z>b/y
=>b/y-a/x<0 vô lí vì từ (**) :
b/y-a/x>0
*nếu: c/z-b/y<0
<=>c/z<b/y
Theo (*) ta có:
a/x-c/z<0
=>a/x<c/z
=>a/x<c/z<b/y.
=>b/y-a/x>0. vô lí vì theo (**) => b/y-a/x<0
Vậy ta phải có:
c/z-b/y=0
Thay vào (*) ta có:
a/x=b/y=c/z.