K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\) chia het cho 12

17 tháng 5 2016

\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)=n^2-1-n^2+12n-35\)

\(=12n-36=12\left(n-3\right)\) chia het cho 12

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

\(3^{n+1}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

17 tháng 5 2016

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-n^2+n+6\)

\(=6n+6=6\left(n+1\right)\) chia hết cho 6 với n thuộc Z

7 tháng 12 2017

đặt A = n . ( 2n + 7 ) . ( 7n + 1 )

Ta thấy trong 2 số n và 7n + 1 sẽ có 1 số chẵn với mọi n thuộc N

A = n . ( 7n + 1 ) \(⋮\)2 ( 1 )

Ta cần chứng minh : n . ( 2n + 7 ) . ( 7n + 1 ) \(⋮\)

Giả sử : n = 3k + r ( k \(\in\)N , r = { 0 ; 1 ;2  } )

với n = 3k \(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(⋮\)3

với n = 3k + 1 \(\Rightarrow\)2n + 7 = 6k + 9 \(⋮\)\(\Rightarrow\)\(⋮\)3

với n = 3k + 2 \(\Rightarrow\)7n + 1 = 21k + 15 \(⋮\)\(\Rightarrow\)\(⋮\)3

Như vậy, A \(⋮\)\(\forall\)\(\in\)N ( 2 )

Mà ( 2 ; 3 ) = 1 

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)6

7 tháng 12 2017

lên mạng có thì phải

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)