Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng định lý berzout ta có:
=>f(-5)=2
f(-5)= 3 x 52 - 5a +27 = 2
=> 3 x 52 - 5a +27 = 2
=>a=20
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
\(\left(3x^3+ax+27\right)⋮\left(x+5\right)\\ \Leftrightarrow3x^3+ax+27=\left(x+5\right)\cdot a\left(x\right)\)
Thay \(x=-5\Leftrightarrow-375-5a+27=0\\ \Leftrightarrow-5a=348\Leftrightarrow a=-\dfrac{348}{5}\)
2.
Ta thấy $x^2+2x+1=(x+1)^2$
Để $x^4+ax^2+1$ chia hết cho $x^2+2x+1$ thì trước tiên nó phải chia hết cho $x+1$, tức là số dư khi thực hiện phép chia là $0$
Áp dụng định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=x^4+ax^2+1$ cho $x+1$ là:
\(f(-1)=(-1)^4+a(-1)^2+1=1+a+1=0\Leftrightarrow a=-2\)
Thử lại:
\(x^4+ax^2+1=x^4-2x^2+1=(x^2-1)^2=(x-1)^2(x+1)^2\vdots (x+1)^2\) (thỏa mãn)
Vậy $a=-2$
3)
Theo định lý Bê-du về phép chia đa thức, số dư khi chia $f(x)=3x^2+ax+27$ cho $x+5$ là
\(f(-5)=3(-5)^2+a(-5)+27=102-5a\)
Để số dư bằng $2$ thì \(102-5a=2\Rightarrow a=20\)
a) Để P(x) chia hết cho Q(x)=2x-1 thì \(P(\dfrac{1}{2})\)=0
<=> \(P(\dfrac{1}{2})= a.(\dfrac{1}{2})^{3} -3.(\dfrac{1}{2})^{2} +a.\dfrac{1}{2}-1=0\)
<=> \(a.\dfrac{1}{8} -\dfrac{3}{4}+a.\dfrac{1}{2}-1=0\)
<=> \(\dfrac{5}{8}.a = \dfrac{7}{4}\)
<=> \(a= \dfrac{14}{5}\)
Vậy \(a=\dfrac{14}{5} thì\) P(x) chia hết cho Q(x)
Chúc bạn học tốt!!!!!😄
Bài 1:
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12.
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.
b, a=-2
c,a=-20
Bài2.Xác định a và b sao cho
a)x^4+ax^2+1 chia hết cho x^2+x+1
b)ax^3+bx-24 chia hết cho (x+1)(x+3)
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21
Giải
a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2)
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p)
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi)
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p
Đồng nhất hệ số, ta có:
m = 1
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0)
n + p = a
n + p =0
p = 1
=>n = -1 và n + p = -1 + 1 = 0 = a
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d:
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21
b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**)
giải hệ (*), (**) trên ta được a= 2; b=-26
c) f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21
f(-1) = -6 ---> -2-a+b =-6 (*)
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**)
Giải hệ (*); (**) trên ta được a=3; b=-1
-Áp dụng định lí Bezout:
\(P\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+7.\left(-1\right)^2+a.\left(-1\right)+b=0\)
\(\Rightarrow1+6+7-a+b=0\)
\(\Rightarrow a-b=14\left(1\right)\)
\(P\left(-2\right)=\left(-2\right)^4-6.\left(-2\right)^3+7.\left(-2\right)^2+a.\left(-2\right)+b=0\)
\(\Rightarrow16+48+28-2a+b=12\)
\(\Rightarrow2a-b=80\left(2\right)\)
-Từ (1) và (2) suy ra: \(a=66;b=52\)
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
Vậy đa thức dư là : \(-5a+12=2\Leftrightarrow a=2\)
Ps : đề thiếu rồi, bạn kiểm tra lại nhé
Sửa đề: Nếu \(3x^2+ax+27\)chia hết cho x+5 dư 2 thì đa thức dư .Có cái đề viết cũng khong xong :)))
Gọi\(f\left(x\right)=3x^2+ax+27\)
Áp dụng định lí Bezoute ta được:
\(f\left(x\right)\div x+5\)dư 2
Với \(x=-5\)thì ta được:
\(\Rightarrow f\left(-5\right)=2\)
Thay x=-5 vào f(x) ta được
\(3.\left(-5\right)^2+\left(-5\right)a+27=2\)
\(\Rightarrow75-5a+27=2\)
\(\Rightarrow102-5a=2\)
\(\Rightarrow-5a=-100\)
\(\Rightarrow a=20\)
\(\Rightarrow f\left(x\right)=3x^2+20x+27\)
Vậy đa thức dư là \(f\left(x\right)=3x^2+20x+27\)