K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

\(x^2_2-2\left(m+1\right)x_2+6m-4=0\) la sao

AH
Akai Haruma
Giáo viên
4 tháng 8 2020

Nguyễn Thái Sơn: vì $x_2$ là nghiệm của PT $x^2-2(m+1)x+6m-4=0$ (phương trình ban đầu) đó bạn.

1 tháng 5 2017

mày ó

c cứt à????<3

a. vs m=-1 ,thay vào pt(1) ,ta đc :

x^2 -(-1+2)x +2.(-1) =0

<=>x^2 -x-2 =0

Có : đenta = (-1)^2 -4.(-2) =9 >0

=> căn đenta =căn 9 =3

=> X1 =2 ; X2=-1

Vậy pt (1) có tập nghiệm S={-1;2}

18 tháng 2 2023

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>[-(m+1)^2]-6m+4 >= 0`

                      `<=>m^2+2m+1-6m+4 >= 0`

                      `<=>m^2-4m+5 >= 0<=>(m-2)^2+1 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=6m-4):}`

Có:`(2m-2)x_1+x_2 ^2-4x_2=4`

`<=>(x_1+x_2-4)x_1+x_2 ^2-4x_2=4`

`<=>x_1 ^2+x_1 x_2 -4x_1+x_2 ^2-4x_2=4`

`<=>(x_1+x_2)^2-x_1x_2-4(x_1+x_2)=4`

`<=>(2m+2)^2-(6m-4)-4(2m+2)=4`

`<=>4m^2+8m+4-6m+4-8m-8=4`

`<=>4m^2-6m-4=0`

`<=>(2m-3/2)^2-25/4=0`

`<=>|2m-3/2|=5/2`

`<=>[(m=2),(m=-1/2):}`

2 tháng 5 2017

a/ Thay m=-1 vào phương trình (1) ta được:

\(x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)

b/ Xét phương trình (1) có

\(\Delta=\left(m+2\right)^2-4.2m\)

= \(m^2-4m+4=\left(m-2\right)^2\)

Ta có: \(\left(m-2\right)^2\ge0\) với mọi m

\(\Leftrightarrow\Delta\ge0\) với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)

\(\Leftrightarrow m^2+2m-1\le0\)

\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)

vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)

22 tháng 1 2017

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)

\(\Leftrightarrow m^2-2m+1>0\)

\(\Leftrightarrow m\ne1\)

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)

Ta có: \(\left|x_1-x_2\right|-2=0\)

\(\Leftrightarrow\left|x_1-x_2\right|=2\)

\(\Leftrightarrow x^2_1-2x_1x_2+x^2_2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)

 \(\Leftrightarrow m^2-2m-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\) 

22 tháng 1 2017

Bài này không dùng vi_et đúng là dài thật: (hiểu "Tam giác" rồi chính thức gia nhập giải lớp 9 không giao luu nữa")

29 tháng 12 2021

Đúng rồi đó, Minh Sơn

30 tháng 4 2022

Để pt 1 có 2 nghiệm phân biệt =>\(\Delta\)>0 

<=> (2m-1(- 4(m2-3m-4( >0

<=> 4m- 4m + 1 - 4m2+12m+16 > 0

<=>8m +17>0

<=> m>-17/8

=> theo hệ thức Vi ét ta có 

x1+x2=-2m+1              *

x1.x2=m2-3m-4           *

Theo bài ra  ta có pt

|x1−x2|−2=0

<=> |x1−x2|=2

<=> (x1-x2(2=22

<=> x12 - 2x1.x2 + x2 = 4

<=> (x+ x2 > 2- 4 x1x= 4  <**>

Thay *,*  vào <**>  ta được :

(-<2m-1>>- 4<m2-3m-4> = 4 

<=> 4m2-4m+1 - 4m2+12m+16=4

<=> 8m + 17= 4

<=> 8m = 13 

<=> m= 13/8 < t/m >

Vậy m = 13/8 là giá trị cần tìm

 

 

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:

Để pt có 2 nghiệm pb thì:

$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$

Áp dụng định lý Viet: 

$x_1+x_2=1-2m$

$x_1x_2=m^2-3m-4$

Khi đó:

$|x_1-x_2|-2=0$

$\Leftrightarrow |x_1-x_2|=2$

$\Leftrightarrow (x_1-x_2)^2=4$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$

$\Leftrightarrow 8m+17=4$

$\Leftrightarrow m=\frac{-13}{8}$ (tm)