Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Thái Sơn: vì $x_2$ là nghiệm của PT $x^2-2(m+1)x+6m-4=0$ (phương trình ban đầu) đó bạn.
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
- Phương trình: \(x^2-5x+3m+1=0.\)ở dạng tổng quát \(ax^2+bx+c=0\)có hệ số \(a=1;b=-5;c=3m+1\)
- \(x_1;x_2\)là nghiệm của phương trình thì: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=5\left(a\right)\\x_1\cdot x_2=\frac{c}{a}=3m+1\left(b\right)\end{cases}}\)
- \(\left|x_1^2-x_2^2\right|=_{ }\left|\left(x_1-x_2\right)\cdot\left(x_1+x_2\right)\right|=5\cdot\left|x_1-x_2\right|=15\Rightarrow\left|x_1-x_2\right|=3\)
- Nếu \(x_1-x_2=3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=4;x_2=1\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
- Nếu \(x_1-x_2=-3\)cùng với (a) \(x_1+x_2=5\)\(\Rightarrow x_1=1;x_2=4\)thay vào (b) \(4\cdot1=3m+1\Rightarrow m=1\)
- Vậy, với m=1 thì PT trên có 2 nghiệm phân biệt thỏa mãn điều kiện đề bài.
\(x^2-6x+2m-3=0\)
\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)
Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là
\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)
\(=>x_1^2=3-2m+6x_1\)
\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)
\(=>x_2^2=3-2m+6x_2\)
Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)
\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)
\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)
\(\left(x_1-1\right)\left(x_2-1\right)=2\)
\(x_1x_2-x_1-x_2+1=2\)
\(x_1x_2-\left(x_1+x_2\right)=1\)
\(2m-3-6=1\)
\(2m-9=1\)
\(m=5\)
Vậy m=5
Lời giải:
Áp dụng định lý Vi-et cho pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-4\end{matrix}\right.\)
Khi đó, với $m\neq 2$, ta có:
\(\frac{1}{x_1}.\frac{1}{x_2}=\frac{1}{x_2x_2}=\frac{1}{2m-4}\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2(m-1)}{2m-4}=\frac{m-1}{m-2}\)
Từ đây áp dụng định lý Vi-et đảo, \(\frac{1}{x_1}, \frac{1}{x_2}\) sẽ là nghiệm của pt:
\(X^2-\frac{m-1}{m-2}X+\frac{1}{2m-4}=0\)
Lời giải:
a) Ta có:
\(x^2-2(m-1)x+2m-3=0\)
\(\Leftrightarrow (x^2-1)-2(m-1)x+2(m-1)=0\)
\(\Leftrightarrow (x-1)(x+1)-2(m-1)(x-1)=0\)
\(\Leftrightarrow (x-1)[x+1-2(m-1)]=0\)
\(\Leftrightarrow (x-1)(x-2m+3)=0\)
Do đó pt có nghiệm \(x=1\)
b) Nghiệm còn lại của PT là: \(x=2m-3\)
Như vậy : \(x_1-x_2=1\Leftrightarrow \left[\begin{matrix} 1-(2m-3)=1\\ (2m-3)-1=1\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} m=\frac{3}{2}\\ m=\frac{5}{2}\end{matrix}\right.\)
Ptr có nghiệm `<=>\Delta' >= 0`
`<=>[-(m+1)^2]-6m+4 >= 0`
`<=>m^2+2m+1-6m+4 >= 0`
`<=>m^2-4m+5 >= 0<=>(m-2)^2+1 >= 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=6m-4):}`
Có:`(2m-2)x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2-4)x_1+x_2 ^2-4x_2=4`
`<=>x_1 ^2+x_1 x_2 -4x_1+x_2 ^2-4x_2=4`
`<=>(x_1+x_2)^2-x_1x_2-4(x_1+x_2)=4`
`<=>(2m+2)^2-(6m-4)-4(2m+2)=4`
`<=>4m^2+8m+4-6m+4-8m-8=4`
`<=>4m^2-6m-4=0`
`<=>(2m-3/2)^2-25/4=0`
`<=>|2m-3/2|=5/2`
`<=>[(m=2),(m=-1/2):}`