K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a/ Thay m=-1 vào phương trình (1) ta được:

\(x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)

b/ Xét phương trình (1) có

\(\Delta=\left(m+2\right)^2-4.2m\)

= \(m^2-4m+4=\left(m-2\right)^2\)

Ta có: \(\left(m-2\right)^2\ge0\) với mọi m

\(\Leftrightarrow\Delta\ge0\) với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)

\(\Leftrightarrow m^2+2m-1\le0\)

\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)

vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)

1 tháng 5 2017

mày ó

c cứt à????<3

a. vs m=-1 ,thay vào pt(1) ,ta đc :

x^2 -(-1+2)x +2.(-1) =0

<=>x^2 -x-2 =0

Có : đenta = (-1)^2 -4.(-2) =9 >0

=> căn đenta =căn 9 =3

=> X1 =2 ; X2=-1

Vậy pt (1) có tập nghiệm S={-1;2}

NV
9 tháng 4 2019

a/ Bạn tự giải

b/ \(\Delta'=-m^2+2m\)

Để pt có nghiệm thì \(\Delta'\ge0\Rightarrow-m^2+2m\ge0\Rightarrow0\le m\le2\)

Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-2m+1=\left(m-1\right)^2\end{matrix}\right.\)

Xét \(A=\left|x_2-x_1\right|\Rightarrow A^2=\left(x_2-x_1\right)^2\)

\(A^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(A^2=4-4\left(m-1\right)^2\le4\)

\(\Rightarrow A\le2\) (đpcm)

Dấu "=" xảy ra khi \(m-1=0\Rightarrow m=1\)

18 tháng 6 2015

a) có nghiệm => \(\Delta=16-4\left(m+1\right)=12-4m\ge0\Leftrightarrow m\le3\)

áp dụng hệ thức vi ét ta có: x1+x2=4;   x1.x2=m+1

b) \(x1^2+x2^2=10\Leftrightarrow\left(x1+x2\right)^2-2x1x2=10\Leftrightarrow16-2\left(m+1\right)=10\Leftrightarrow m=2\)(t/m đk)

c) \(x1^3+x2^3=34\Leftrightarrow\left(x1+x2\right)^3-3x1.x2\left(x1+x2\right)=34\Leftrightarrow64-12\left(m+1\right)=34\Leftrightarrow m=\frac{3}{2}\)(t/m đk)

5 tháng 4 2019

a)

\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)

\(\Delta'\ge0\) nên phương trình có nghiệm với mọi m

b) Theo Vi-ét có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)

Lấy phương trình đầu của hệ, kết hợp với đề bài, có

\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

Ta có

\(x_1x_2=4m-m^2\)

Đã tìm được \(x_1\)\(x_2\) , thay vào để tìm m

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)

Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)

Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10

18 tháng 6 2015

a) Thay m= 2 vào pt A (A= x+3(m-3x2)=m), ta được:

A= x+ 3( 2 - 3x2)= 2    <=> x = -1