K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

1/

a) \(123.456+123.789-1245.23\)

\(=123.\left(456+789\right)-1245.23\)

\(=123.1245-1245.23\)

\(=1245.\left(123-23\right)\)

\(=1245.100\)

\(=124500\)

b) \(2^9\div16^2+81^5\div3^{18}-125^7\div625^5\)

\(=2^9\div\left(2^4\right)^{^2}+\left(3^4\right)^{^5}\div3^{18}-\left(5^3\right)^{^7}\div\left(5^4\right)^{^5}\)

\(=2^9\div2^8+3^{20}\div3^{18}-5^{21}\div5^{20}\)

\(=2^1+3^2-5^1\)

\(=2+9-5\)

\(=6\)

2/ a) Ta có: 7n chia 3 dư 1 hoặc dư 2

Nếu 7^n chia 3 dư 1 => 7^n + 2 chia hết cho 3 => Tích chia hết cho 3

Nếu 7^n chia 3 dư 2 => 7^n + 1 chia hết cho 3 => Tích chia hết cho 3

Vậy (7^n + 1).(7^n + 2) chia hết cho 3 

ĐK đúng: n thuộc N

b) Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y) . (y + z) . (z + x) \(⋮2\)

=> (x + y)(y + z)(z + x) + 2016 \(⋮2\) (vì 2016 \(⋮\) 2)

Mà 20172018 \(⋮̸\) 2

Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài

11 tháng 1 2018

a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3

Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )

=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N

Tk mk nha

11 tháng 1 2018

b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2

=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)

Mà 20172018 không chia hết cho 2

Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài

20 tháng 8 2015

a)ta co

63x chia het cho 7 ( vi 63 luon chia het cho7)

49y chia het cho 7( vi 49l uon chia het cho7)

35z chia het cho 7 ( vi35 luon chia het cho 7)

==> (63x+49y+35z) chia het cho 7 voi moi x,y,z

b) ta co

39x chia het cho 13 vi ( 39 luon chia het cho 13)

52y chia het cho 13 vi (52 luon chia het cho13)

91z chia het cho 13 vi (91 luon chia het cho13)

-> 36x+52y+91z luon chia het cho 13 voi moi x,y,z