Help me! Khẩn cấp
CMR: A=31n-15n-24n+8n chia hết cho 112 (n là số tự nhiên)
CM \(a^3b-ab^3⋮6\left(\forall n\inℤ\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Nếu n lẻ
=> 15n lẻ
=> 15n + 17 chẵn
=> (15n + 17)(19n + 20) chẵn
=> (15n + 17)(19n + 20) chia hết cho 2
*Nếu n chẵn
=> 19n chẵn
=> 19n + 20 chẵn
=> (15n + 17)(19n + 20) chẵn
=> (15n + 17)(19n + 20) chia hết cho 2
Vậy ..........
p(x) = x3 - a2x + 2016b = x(x-a)(x+a) + 2016b
* a = 3k+1: p(x) = x(x-1-3k)(x+1+3k) + 2016b
Trong 3 số x - 1; x; x + 1 tồn tại một số chia hết cho 3
. x - 1 chia hết cho 3 => x-1-3k chia hết cho 3 => p(x) chia hết cho 3
. x chia hết cho 3 => p(x) chia hết cho 3
. x + 1 chia hết cho 3 => x+1+3k chia hết cho 3 => p(x) chia hết cho 3
* a = 3k-1: p(x) = x(x-3k+1)(x+3k-1) + 2016b
Trong 3 số x - 1; x; x + 1 tồn tại một số chia hết cho 3
. x - 1 chia hết cho 3 => x-1+3k chia hết cho 3 => p(x) chia hết cho 3
. x chia hết cho 3 => p(x) chia hết cho 3
. x + 1 chia hết cho 3 => x+1-3k chia hết cho 3 => p(x) chia hết cho 3
Vậy với mọi a; b thuộc Z; a không chia hết cho 3 thì p(x) chia hết cho 3 với mọi x thuộc Z
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
Ta có: \(a^3b-ab^3\)
\(=a^3b-ab-ab^3+ab\)
= \(ab\left(a-1\right)\left(a+1\right)-ab\left(b-1\right)\left(b+1\right)\)
Mà 3 số tự nhiên liên tiếp luôn chia hết cho 6
=> \(ab\left(a-1\right)\left(a+1\right)⋮6,ab\left(b-1\right)\left(b+1\right)⋮6\)
=> \(a^3b-b^3a⋮6\Rightarrowđpcm\)
ta có: ab(a2)-ab(b2) = (ab - ab) (a2-b2) = 0 (a2 - b2)
=> 0 (a2 - b2) = 0
=>a3b - ab3 =0 mà 0:6
=>a3b -ab3 :6
bước đầu là phân tích đa thức thành nhân tử