Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (n2 + n - 1)2 - 1
= ( n2 + n - 1 + 1)(n2 + n - 1 - 1)
= (n2 + n)(n2 + n - 2)
= n(n + 1)(n2 + 2n - n - 2)
= n(n+ 1)[n(n + 2) - (n + 2)]
= n(n + 1)(n - 1)(n + 2)
Do n(n + 1)(n - 1)(n + 2) là tích của 4 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
1 thừa số chia hết cho 4
mà (2, 3, 4) = 1
=> n(n + 1)(n - 1)(n + 2) \(⋮\)2.3.4 = 24
=> (n2 + n - 1)2 - 1 \(⋮\)24 \(\forall\)n \(\in\)Z
b) Do n chẵn => n có dạng 2k (k \(\in\)Z)
Khi đó, ta có: n3 + 6n2 + 8n
= (2k)3 + 6.(2k)2 + 8.2k
= 8k3 + 24k2 + 16k
= 8k(k2 + 3k + 2)
= 8k(k2 + 2k + k + 2)
= 8k[k(k + 2) + (k + 2)]
= 8k(k + 1)(k + 2)
Do k(k + 1)(k + 2) là tích của 3 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
=> k(k + 1)(k + 2) \(⋮\)2.3 = 6
=> 8k(k + 1)(k + 2) \(⋮\)8.6 = 48
Vậy n3 + 6n2 + 8n \(⋮\)48 \(\forall\)n là số chẵn
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
b) n3 + 6n2 + 8n
= n( n2 + 6n + 8)
= n( n2 + 2n + 4n + 8)
= n[ n( n +2) + 4( n +2)]
= n( n +2)( n + 4)
Do n chẵn nên ta đặt : 2k = n
Ta có : 2k( 2k +2)( 2k +4)
= 2k.2( k +1)2( k +2)
= 8k( k + 1)( k +2)
Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3
Suy ra : k( k + 1)( k +2) chia hết cho 6
Suy ra : 8k( k + 1)( k +2) chia hết cho 48
a) 24= 2.3.4
(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)
=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)
Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4
Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
\(\Rightarrowđpcm\)
b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10=2\left(12n+5\right)⋮2\)
\(\Rightarrowđpcm\)
là 10 nhé