K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

a2 + 3b2 = 4ab

=> a2 + b2 + 2b2 - 2ab - 2ab = 0

=> (a2 - 2ab + b2) - 2b(a - b) = 0

=> (a - b)2 - 2b(a - b) = 0

=> (a - b)(a - b - 2b) = 0

=> (a - b)(a - 3b) = 0

*Xảy ra 2 trường hợp: a - b = 0 => a = b (vô lí vì a > b > 0)

                          và    a - 3b = 0 => a = 3b

Vậy A = ...................Bạn thay a = 3b vào A là xong

5 tháng 1 2018

Đúng rồi !!

6 tháng 4 2017

Tìm giá trị của phân thức khi biến thỏa mãn điều kiện cho trước | Toán lớp 8

19 tháng 11 2021

Ta có a+b=11 ⇒ b=11-a

thay b=11-a vào 2a=b/4 ta có

\(2a=\dfrac{11-a}{4}\)

\(\Leftrightarrow8a=11-a\Leftrightarrow9a=11\Leftrightarrow a=\dfrac{11}{9}\)

với a =\(\dfrac{11}{9}\) thì b=11-\(\dfrac{11}{9}=\dfrac{88}{9}\)

Vậy ...

23 tháng 11 2021

Uki

 

27 tháng 11 2016

Ta có: \(3a^2+b^2=4ab\Rightarrow4a^2-4ab+b^2-a^2=0\Rightarrow\left(2a-b\right)^2-a^2=0\)

\(\Rightarrow\left(2a-b-a\right)\left(2a-b+a\right)=0\Rightarrow\left(a-b\right)\left(3a-b\right)=0\)

Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}a-b=0\\3a-b=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=b\\3a=b\end{array}\right.\)

theo đề ra thì b>a>0 => không xảy ra trường hợp a=b.

\(\Rightarrow\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=-\frac{1}{2}\)

P/s: Không biết cách trình bày có đc không a~

 

3 tháng 1 2018

Chọn D.

Đặt  t   =   3 x + 1   → t 2   =   3 x   +   1   ⇒ d x   =   2 3 t d t x   =   t 2 - 1 2     Đổi cận  x   =   1 →   t   =   2 x   =   5   →   t   =   4

Suy ra a = 2; b = -1 a2 + ab + 3b2 = 5.

28 tháng 8 2018

Ta có: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2+2ab+b^2\right)=9ab\Leftrightarrow\left(a+b\right)^2=\frac{9ab}{2}\)

Mặt khác: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2-2ab+b^2\right)=ab\Leftrightarrow\left(a-b\right)^2=\frac{ab}{2}\)

Do đó: \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\left(\frac{a+b}{a-b}\right)^2=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\Leftrightarrow M=\frac{a+b}{a-b}=\pm3\)

Mà a > b > 0 => M = 3

30 tháng 8 2018

Ta có: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2+2ab+b^2\right)=9ab\Leftrightarrow\left(a+b\right)^2=\frac{9ab}{2}\)

Mặt khác: \(2a^2+2b^2=5ab\Leftrightarrow2\left(a^2-2ab+b^2\right)=ab\Leftrightarrow\left(a-b\right)^2=\frac{ab}{2}\)

Do đó: \(\frac{\left(a+b\right)^2}{\left(a-b\right)^2}=\left(\frac{a+b}{a-b}\right)^2=\frac{\frac{9ab}{2}}{\frac{ab}{2}}=9\Leftrightarrow M=\frac{a+b}{a-b}=\pm3\)

Mà \(a>b>0\Rightarrow M=3\)