K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)

Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)

16 tháng 10 2017

Ta có \(C=x^2+2y^2-2xy-4y+5=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\)

Do \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\Rightarrow C\ge1\)

Vậy GTNN của C là 1 khi \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)

10 tháng 12 2016

Ta có

\(A=x^2+2y^2+2xy-2x-8y+2017\)

\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)

\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

13 tháng 10 2019

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

13 tháng 10 2019

Mình làm có gì sai hả @@ 

10 tháng 3 2016

2P = \(2x^2+4xy+4y^2-12x-8y+50\)

      = \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)

      = \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)

=> P \(\ge15\)

Dấu '' = '' xảy ra khi x = 4 ; y = -1

10 tháng 3 2016

P = x2 + 2y2 + 2xy - 6x - 4y + 25 đạt GTNN khi x2 + 2y2 + 2xy - 6x - 4y = -25 và P = 0

Lập luận đỉnh cao!! ^~^

7 tháng 12 2017

\(P=x^2+2y^2+2xy-6x-4y+13\)

\(=\left(x^2+2xy+y^2\right)+y^2-6\left(x+y\right)+2y+13\)

\(=\left(x+y\right)^2-2\left(x+y\right)3+9+y^2+2y+1+3\)

\(=\left(x+y-3\right)^2+\left(y+1\right)^2+3\)

\(\left(x+y-3\right)^2\ge0\forall x;y\)

\(\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow P\ge3\forall x;y\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y-3=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)

Vậy \(P_{Min}=3\Leftrightarrow\left(x;y\right)=\left(4;-1\right)\)

7 tháng 12 2017

Ta có: P = x2 + 2y2 + 2xy - 6x -4y +13

= (x2 + y2 + 9 + 2xy - 6x - 6y) + (y2 + 2y + 1) + 3

= (x + y - 3)2 + (y + 1)2 + 3

Ta thấy (x + y - 3)2 ≥ 0 với mọi x,y

(y + 1)2 ≥ 0 với mọi x,y

⇔ (x + y - 3)2 + (y + 1)2 ≥ 0 với mọi x,y

⇔ (x + y - 3)2 + (y + 1)2 +3 ≥ 3 với mọi x,y

hay P ≥ 3 với mọi x,y

Dấu "=" xảy ra

\(\left\{{}\begin{matrix}x+y-3=0\\y+1=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y-3=0\\y=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-1-3=0\\y=-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)

Vậy GTNN của biểu thức P là 3 khi x=4 và y=-1.

5 tháng 4 2017

A=x2+2y2+2xy+2x-4y+2013

=x2+y2+1+2xy+2x+2y+y2-6y+9+2003

=(x+y+1)2+(y-3)2+2003

Min A=2003 tại x=-4;y=3

5 tháng 4 2017

A= (X2+2XY+Y2) + 2(X+Y)+1+Y2-6Y+9+2003

A=(X+Y)2+ 2(X+Y)+1+(Y-3)2+2003

A=(X+Y+1)2+(Y-3)2+2003

=> A>=2003

(DẤU "=" XẢY RA KHI X=-4;Y=3)

7 tháng 5 2020

đề không sai đâu nếu đề như cậu thì tớ đã lm đc r

\n
NV
7 tháng 5 2020

Bạn ko hiểu về BĐT

\n\n

Để chứng minh 1 đề bài sai, bạn chỉ cần lấy 1 phản ví dụ là đủ

\n