K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

2P = \(2x^2+4xy+4y^2-12x-8y+50\)

      = \(\left(x+2y\right)^2-2\left(x+2y\right)\cdot2+4+x^2-8x+16+30\)

      = \(\left(x+2y-2\right)^2+\left(x-4\right)^2+30\ge30\)

=> P \(\ge15\)

Dấu '' = '' xảy ra khi x = 4 ; y = -1

10 tháng 3 2016

P = x2 + 2y2 + 2xy - 6x - 4y + 25 đạt GTNN khi x2 + 2y2 + 2xy - 6x - 4y = -25 và P = 0

Lập luận đỉnh cao!! ^~^

6 tháng 12 2015

2) ĐKXĐ:  \(1\le x\le5\)

\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)

Xảy ra đẳng thức khi và chỉ khi x = 3

8 tháng 5 2019

\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)

\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)

\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)

\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)

\("="\Leftrightarrow x=3\)

14 tháng 8 2017

\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)

\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)

\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)

Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)

Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)

\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)

\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)

14 tháng 8 2017

Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)

Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)

Q = \(3x-1+3x-5+2011\)

Q = \(6x+2005\)

29 tháng 8 2021

ai giúp em bài1 và phần b bài 2 với ạ

 

22 tháng 2 2019

\(P=\frac{2x^2-2xy+9y^2}{x^2+2xy+5y^2}=1+\frac{\left(x-2y\right)^2}{x^2+2xy+5y^2}=\frac{17}{4}-\frac{1}{3}.\frac{\left(3x+7y\right)^2}{x^2+2xy+5y^2}\)

\(\Rightarrow\hept{\begin{cases}min_P=1\\max_P=\frac{17}{4}\end{cases}}\)

28 tháng 8 2021

 làm sao để ra max được v