cho SABCD đáy là hình vg tâm O ,SAvg góc vs ABCD.SB hợp vs đáy 1 góc 45 độ tinh kc giữa AD vs SC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SA=SC
OA=OC
=>SO là trung trực của AC
=>SO vuông góc AC(1)
SB=SD
OB=OD
=>SO là trung trực của BD
=>SO vuông góc BD(2)
Từ (1), (2) suy ra SO vuông góc (ABCD)
=>SO vuông góc CB
Lời giải:
Lấy $H$ là trung điểm $AB$ thì do $SAB$ cân tại $S$ nên $SH\perp BH$
$BH$ là giao tuyến của $(SAB), (ABCD)$; (SAB)\perp (ABCD)$ nên $SH\perp (ABCD)$
$\Rightarrow (SC, (ABCD))=(SC, CH)=\widehat{SCH}=45^0$
$\Rightarrow SH=CH=\sqrt{BC^2+BH^2}=\sqrt{(2a)^2+(\frac{a}{2})^2}=\frac{\sqrt{17}}{2}a$
\(V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{17}}{2}a.a.2a=\frac{\sqrt{17}}{3}a^3\)
\(SA=SB=AB\Rightarrow\Delta SAB\) đều
Do SA=SB=SC=SD \(\Rightarrow SO\perp\left(ABCD\right)\)
\(AB||CD\Rightarrow\left(SA;CD\right)=\left(SA;AB\right)=\widehat{SAB}=60^0\)
b.
\(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\Rightarrow\left(SO;BC\right)=90^0\)
c.
Ta có OM là đường trung bình tam giác SBD \(\Rightarrow OM||SD\)
\(\Rightarrow\left(SD;CM\right)=\left(OM;CM\right)=\widehat{OMC}\)
\(OM=\dfrac{1}{2}SD=a\) ; \(OC=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AB^2+AD^2}=\dfrac{a\sqrt{5}}{2}\)
\(cos\widehat{SBC}=\dfrac{1}{4}\Rightarrow CM=\sqrt{BM^2+BC^2-2BM.BC.cos\widehat{SBC}}=\dfrac{a\sqrt{6}}{2}\)
\(cos\widehat{OMC}=\dfrac{OM^2+CM^2-OC^2}{2OM.CM}=\dfrac{5\sqrt{6}}{24}\)
\(\Rightarrow\widehat{OMC}\simeq59^0\)
Đề bài thiếu dữ liệu định vị điểm S (ví dụ SC bằng bao nhiêu đó) nên ko thể tính góc giữa SB và (ABCD)
\(AD//BC\)nên \(\left(SBC\right)//AD\).
\(d\left(AD,SC\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)\)
Đặt \(AB=BC=CD=DA=a\).
\(\widehat{SBA}=45^o\Rightarrow SA=a\).
Kẻ \(AH\perp SB\).
\(AH=\frac{a\sqrt{2}}{2}\).
\(d\left(AD,SC\right)=d\left(AD,\left(SBC\right)\right)=d\left(A,\left(SBC\right)\right)=AH=\frac{a\sqrt{2}}{2}\).