K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 4 2021

\(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\\left(SAB\right)\cap\left(ABCD\right)=AB\\SA\perp AB\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)

\(\widehat{SBA}=45^0\) (do SAB vuông cân tại A)

b.

\(\widehat{SCA}\) là góc giữa SC và (ABCD)

\(AC=AB\sqrt{2}=2a\sqrt{2}\)

\(tan\widehat{SCA}=\dfrac{SA}{SC}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{SCA}\approx35^015'\)

NV
21 tháng 4 2021

Do S.ABCD là chóp đều \(\Rightarrow BD\perp\left(SAC\right)\)

Mà BD là giao tuyến (MBD) và (ABCD)

\(\Rightarrow\widehat{MOC}\) là góc giữa (MBD) và (ABCD)

\(OC=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\) ; \(MC=OM=\dfrac{1}{2}SC=\dfrac{a}{2}\)

Áp dụng định lý hàm cosin:

\(cos\widehat{MOC}=\dfrac{OM^2+OC^2-CM^2}{2OM.OC}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\widehat{MOC}=45^0\)

26 tháng 6 2017

Đáp án D.

a: Xét ΔBAC có BA=BC và góc ABC=60 độ

nên ΔABC đều

=>\(S_{ABC}=\dfrac{a^2\sqrt{3}}{4}\)

=>\(S_{ABCD}=\dfrac{a^2\sqrt{3}}{2}\)

6 tháng 1 2019

ĐÁP ÁN: C

21 tháng 3 2022

kết quả là em lớp 5

21 tháng 3 2022

k biết thì đừng trả lời e nhé

3 tháng 9 2018