K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 2 2023

Đề bài thiếu dữ liệu định vị điểm S (ví dụ SC bằng bao nhiêu đó) nên ko thể tính góc giữa SB và (ABCD)

17 tháng 5 2018

Đáp án A

Trong mặt phẳng  dựng đường thẳng đi qua A và vuông góc vưới SB tại K

Ta chứng minh được

NV
27 tháng 3 2021

Do O là giao điểm 2 đường chéo \(\Rightarrow\) O là trung điểm AC và BD

Tam giác SAC cân tại S \(\Rightarrow SO\) là trung tuyến đồng thời là đường cao

\(\Rightarrow SO\perp AC\) (1)

Tương tự ta có \(SO\perp BD\) (2)

(1); (2) \(\Rightarrow SO\perp\left(ABCD\right)\)

b. Ta có \(AC\perp BD\) nên tam giác OBC vuông tại O

\(\Rightarrow OE=BE=\dfrac{1}{2}BC\) (trung tuyến ứng với cạnh huyền)

Mà \(\widehat{BCD}=\widehat{BAD}=60^0\Rightarrow\Delta BCD\) đều

\(\Rightarrow BD=BC\Rightarrow OB=BE=\dfrac{1}{2}BC\Rightarrow OB=OE=BE\)

\(\Rightarrow\Delta OBE\)  đều \(\Rightarrow OF\perp BC\) (trung tuyến tam giác đều đồng thời là đường cao)

Mà \(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)

\(\Rightarrow BC\perp\left(SOF\right)\Rightarrow\left(SBC\right)\perp\left(SOF\right)\)

NV
22 tháng 5 2021

Gọi O là tâm đáy, M là trung điểm AB và H là hình chiếu vuông góc của S lên (ABCD)

\(\Rightarrow\) H trùng tâm của tam giác đều ABC đồng thời HM là trung tuyến (kiêm đường cao) của tam giác ABC

\(\widehat{DCH}=\widehat{ACH}+\widehat{ACD}=\dfrac{1}{2}\widehat{ACB}+\widehat{ACD}=\dfrac{1}{2}.60^0+60^0=90^0\)

\(\Rightarrow HC\perp CD\)

\(\Rightarrow CD\perp\left(SCH\right)\Rightarrow\widehat{SCH}\) là góc giữa (SCD) và (ABCD) \(\Rightarrow\widehat{SCH}=60^0\)

\(CH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow SH=CH.tan60^0=a\)

\(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(AB;SD\right)=d\left(AB;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)

MH cắt (SCD) tại C, mà \(CM=\dfrac{3}{2}CH\Rightarrow d\left(M;\left(SCD\right)\right)=\dfrac{3}{2}d\left(H;\left(SCD\right)\right)\)

Trong tam giác vuông SCH, kẻ \(HK\perp SC\Rightarrow HK\perp\left(SCD\right)\Rightarrow HK=d\left(H;\left(SCD\right)\right)\)

\(\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{CH^2}=\dfrac{4}{3a^2}\Rightarrow HK=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow d\left(AB;SD\right)=\dfrac{3a\sqrt{3}}{4}\)

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

Gọi $Q$ là điểm nằm trên $DC$ sao cho $AD\parallel PQ$

Khi đó: $MN\parallel AD\parallel PQ$ nên $Q\in (MNP)$

$(MNPQ)$ chính là thiết diện của hình chóp cắt bởi $(MNP)$
Giờ ta cần tìm diện tích hình thang $MNPQ$

$SA=SD; DB=SC; AB=CD$ nên $\triangle SAB=\triangle SDC$

Tương ứng ta có $MP=NQ$

$MN=\frac{AD}{2}=\frac{3a}{2}$

$PQ=AD=3a$

$\Rightarrow MNPQ$ là hình thang cân.

Áp dụng định lý cos:

$\cos \widehat{SAB}=\frac{SA^2+AB^2-SB^2}{2SA.AB}=\frac{MA^2+AP^2-MP^2}{2MA.AP}$

$\Leftrightarrow \frac{9a^2+9a^2-27a^2}{2.3a.3a}=\frac{\frac{9}{4}a^2+4a^2-MP^2}{2.\frac{3}{2}a.2a}$

$\Rightarrow MP^2=\frac{37}{4}a^2$

$\Rightarrow h_{MNPQ}=\sqrt{MP^2-(\frac{PQ-MN}{2})^2}=\frac{\sqrt{139}}{4}a$

Diện tích thiết diện:

$S=\frac{MN+PQ}{2}.h=\frac{9\sqrt{139}}{16}a^2$

 

 

18 tháng 5 2021

undefined