K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Ta có : 

\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\frac{3^2}{\left(a+b+c\right)^2}\)

\(A\ge\frac{9}{3^2}=1\)Dấu "=" khi  a=b=c= 1

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Ta có:
\(\text{VT}=1-\frac{2ab^2}{2ab^2+1}+1-\frac{2bc^2}{2bc^2+1}+1-\frac{2ca^2}{2ca^2+1}\)

\(\text{VT}=3-\underbrace{\left( \frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)}_{N}\) (1)

Áp dụng BĐT Am-Gm:

\(2ab^2+1=ab^2+ab^2+1\geq 3\sqrt[3]{a^2b^4}\)

\(\Rightarrow \frac{2ab^2}{2ab^2+1}\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}=\frac{2}{3}\sqrt[3]{ab^2}\)

Tương tự với các phân thức còn lại và cộng theo vế, suy ra :

\(N\leq \frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)

Áp dụng BĐT AM-GM:

\(\sqrt[3]{ab^2}\leq \frac{a+b+b}{3}\); \(\sqrt[3]{bc^2}\leq \frac{b+c+c}{3}; \sqrt[3]{ca^2}\leq \frac{c+a+a}{3}\)

\(\Rightarrow N\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)\)

\(\Leftrightarrow N\leq \frac{2}{3}(a+b+c)=2\) (2)

Từ \((1),(2)\Rightarrow \text{VT}\geq 1\)

Dấu bằng xảy ra khi \(a=b=c=1\)

11 tháng 11 2017

Áp dụng BĐT B.C.S ta có :

\(\dfrac{1}{2ab^2+1}+\dfrac{1}{2bc^2+1}+\dfrac{1}{2ca^2+1}\ge\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\)

Ta phải chứng minh \(\dfrac{9}{2ab^2+2bc^2+2ca^2+3}\ge1\)

\(\Leftrightarrow2ab^2+2bc^2+2ac^2+3\le9\) do a,b,c dương nên chia cả hai vế cho abc ta được: \(2\left(a+b+c\right)+\dfrac{3}{abc}\le\dfrac{9}{abc}\)

\(\Leftrightarrow6\le\dfrac{6}{abc}\Leftrightarrow abc\le1\) Bất đẳng thức cuối luôn đúng thật vậy:

áp dụng BĐT AM - GM :

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)

\(\Rightarrowđpcm\)

24 tháng 11 2017

Áp dụng BĐT Cauchy Swarch

\(\Sigma\dfrac{1}{a^2+2bc}\ge\dfrac{9}{\left(a+b+c\right)^2}=9\)

Vậy Min ... =9 khi a=b=c=1/3

7 tháng 2 2021

undefined

16 tháng 10 2018

Áp dụng BĐT Cauchy - Schwarz vào bài toán , ta có :

\(Q=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{1^2}=9\) Dấu " = " xảy ra khi : \(\dfrac{1}{a^2+2ab}=\dfrac{1}{b^2+2ac}=\dfrac{1}{c^2+2ab}\Leftrightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow Q_{Min}=9\Leftrightarrow a=b=c=\dfrac{1}{3}\)

9 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}\)

\(=\dfrac{3^2}{\left(a+b+c\right)^2}=\dfrac{9}{\left(a+b+c\right)^2}=9\left(a+b+c\le1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

7 tháng 1 2018

\(VT\ge a+b+c+\dfrac{9}{2\left(ab+bc+ca\right)}\ge\sqrt{3\left(ab+bc+ca\right)}+\dfrac{9}{2\left(ab+bc+ca\right)}\)

\(=\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{9}{2\left(ab+bc+ca\right)}\ge3\sqrt[3]{\dfrac{27}{8}}=\dfrac{9}{2}\)

7 tháng 1 2018

Áp dụng BĐT Cauchy ta có

\(\dfrac{b^2}{a}+a\ge2b;\) \(\dfrac{c^2}{b}+b\ge2c\); \(\dfrac{a^2}{c}+c\ge2a\)

\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\)

\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2\left(ab+bc+ac\right)}\ge a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\)Ta phải chứng minh

\(a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\ge\dfrac{9}{2}\)

\(\Leftrightarrow4\left(a+b+c\right)\left(ab+bc+ac\right)+18\ge18\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge0\)

Áp dụng BĐT Cauchy:

\(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3\)

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge3\left(4.3-18\right)+18=0\)=> đpcm