Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy Swarch
\(\Sigma\dfrac{1}{a^2+2bc}\ge\dfrac{9}{\left(a+b+c\right)^2}=9\)
Vậy Min ... =9 khi a=b=c=1/3
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
Áp dụng BĐT Bunyakovsky, ta có:
\(a+b+c\le\sqrt{3(a^2+b^2+c^2)}=\sqrt{3.3}=3\)
Áp dụng BĐT Cauchy, ta có:
\(A=\sum{\dfrac{1}{\sqrt{1+8a^3}}}=\sum{\dfrac{1}{\sqrt{(2a+1)(4a^2-2a+1)}}} \\\ge\sum{\dfrac{1}{\dfrac{4a^2+2}{2}}}=\sum{\dfrac{1}{2a^2+1}} \)
Ta cần chứng minh: \(\dfrac{1}{2a^2+1}\ge\dfrac{-4}{9}a+\dfrac{7}{9} \\<=>\dfrac{8a^3-14a^2+4a+2}{9(2a^2+1)}\ge0 \\<=>\dfrac{2(a-1)^2(4a+1)}{9(2a^2+1)}\ge0 (luôn\ đúng\ với\ mọi\ a>0) \\->\sum{\dfrac{1}{2a^2+1}}\ge\dfrac{-4}{9}(a+b+c)+\dfrac{21}{9}\ge\dfrac{-4}{9}.3+\dfrac{21}{9}=1 \\->A\ge1 \)
Đẳng thức xảy ra khi a = b = c = 1.
Vậy GTNN của A là 1 (khi a = b = c = 1).
\(VT\ge a+b+c+\dfrac{9}{2\left(ab+bc+ca\right)}\ge\sqrt{3\left(ab+bc+ca\right)}+\dfrac{9}{2\left(ab+bc+ca\right)}\)
\(=\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{9}{2\left(ab+bc+ca\right)}\ge3\sqrt[3]{\dfrac{27}{8}}=\dfrac{9}{2}\)
Áp dụng BĐT Cauchy ta có
\(\dfrac{b^2}{a}+a\ge2b;\) \(\dfrac{c^2}{b}+b\ge2c\); \(\dfrac{a^2}{c}+c\ge2a\)
\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\)
\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2\left(ab+bc+ac\right)}\ge a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\)Ta phải chứng minh
\(a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\ge\dfrac{9}{2}\)
\(\Leftrightarrow4\left(a+b+c\right)\left(ab+bc+ac\right)+18\ge18\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge0\)
Áp dụng BĐT Cauchy:
\(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3\)
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge3\left(4.3-18\right)+18=0\)=> đpcm
Cho 2 số thực dương a,b thỏa mãn \(a+b\le1\) . Tìm GTNN của
\(A=\dfrac{1}{1+a^2+b^2}+\dfrac{1}{2ab}\)
Lời giải:
Áp dụng BĐT AM-GM:
$1\geq a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}$
Áp dụng BĐT Cauchy-Schwarz:
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{6ab}+\frac{1}{3ab}\geq \frac{4}{1+a^2+b^2+6ab}+\frac{1}{3ab}\)
\(=\frac{4}{1+(a+b)^2+4ab}+\frac{1}{3ab}\geq \frac{4}{1+1+4.\frac{1}{4}}+\frac{1}{3.\frac{1}{4}}=\frac{8}{3}\)
Vậy $A_{\min}=\frac{8}{3}$ khi $a=b=\frac{1}{2}$
\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Cauchy - Schwarz vào bài toán , ta có :
\(Q=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{1^2}=9\) Dấu " = " xảy ra khi : \(\dfrac{1}{a^2+2ab}=\dfrac{1}{b^2+2ac}=\dfrac{1}{c^2+2ab}\Leftrightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow Q_{Min}=9\Leftrightarrow a=b=c=\dfrac{1}{3}\)