Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT\ge a+b+c+\dfrac{9}{2\left(ab+bc+ca\right)}\ge\sqrt{3\left(ab+bc+ca\right)}+\dfrac{9}{2\left(ab+bc+ca\right)}\)
\(=\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{\sqrt{3\left(ab+bc+ca\right)}}{2}+\dfrac{9}{2\left(ab+bc+ca\right)}\ge3\sqrt[3]{\dfrac{27}{8}}=\dfrac{9}{2}\)
Áp dụng BĐT Cauchy ta có
\(\dfrac{b^2}{a}+a\ge2b;\) \(\dfrac{c^2}{b}+b\ge2c\); \(\dfrac{a^2}{c}+c\ge2a\)
\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\ge a+b+c\)
\(\Rightarrow\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}+\dfrac{9}{2\left(ab+bc+ac\right)}\ge a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\)Ta phải chứng minh
\(a+b+c+\dfrac{9}{2\left(ab+bc+ac\right)}\ge\dfrac{9}{2}\)
\(\Leftrightarrow4\left(a+b+c\right)\left(ab+bc+ac\right)+18\ge18\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge0\)
Áp dụng BĐT Cauchy:
\(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3\)
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\left(ab+bc+ac\right)\left(4\left(a+b+c\right)-18\right)+18\ge3\left(4.3-18\right)+18=0\)=> đpcm
\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)
\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)
\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)
Do \(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
\(VT=\dfrac{xz}{y\left(x+z\right)}+\dfrac{xy}{z\left(x+y\right)}+\dfrac{yz}{x\left(y+z\right)}=\dfrac{\left(xz\right)^2}{xyz\left(x+z\right)}+\dfrac{\left(xy\right)^2}{xyz\left(x+y\right)}+\dfrac{\left(yz\right)^2}{xyz\left(y+z\right)}\)
\(VT\ge\dfrac{\left(xy+yz+zx\right)^2}{2xyz\left(x+y+z\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{2xyz\left(x+y+z\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=1\)
phần b)nè bạn
đặt x=a^2 + 2bc, y=b^2 + 2ac, z=c^2 + 2ab
=> x + y + z = (a + b + c)^2 <(=) 1
VT bpt : 1/x + 1/y + 1/z >(=) 3.căn3(1/xyz)...dùng cô-si cho 3 số nhé
mà x + y + z >(=) 3.căn3(xyz) <(=) 1
<=> 1/( 3.căn3 (xyz) >(=) 1 (ở đây là đổi chiều bđt)
<=> 1/ căn3 (xyz) >(=) 3
=> VT: 1/x + 1/y + 1/z >(=) 3.3 = 9
Bài 1:ta có BĐt \(a^3+b^3\ge ab\left(a+b\right)\)vì nó tương đương với \(\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)
Áp dụng vào bài toán:
\(\dfrac{a^3+b^3}{2ab}+\dfrac{b^3+c^3}{2bc}+\dfrac{c^3+a^3}{2ac}\ge\dfrac{ab\left(a+b\right)}{2ab}+\dfrac{bc\left(b+c\right)}{2bc}+\dfrac{ca\left(c+a\right)}{2ac}=a+b+c\)dấu = xảy ra khi a=b=c
bài 2:
cần chứng minh \(\dfrac{a-b}{b+c}+\dfrac{b-c}{c+d}+\dfrac{c-d}{d+a}+\dfrac{d-a}{a+b}\ge0\)
hay \(\dfrac{a-b}{b+c}+1+\dfrac{b-c}{c+d}+1+\dfrac{c-d}{d+a}+1+\dfrac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\dfrac{a+c}{b+c}+\dfrac{b+d}{c+d}+\dfrac{c+a}{d+a}+\dfrac{d+b}{a+b}\ge4\)
xét \(VT=\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+d}\right)+\left(b+d\right)\left(\dfrac{1}{c+d}+\dfrac{1}{a+b}\right)\)
Áp dụng BĐT cauchy dạng phân thức:
\(\dfrac{1}{b+c}+\dfrac{1}{a+d}\ge\dfrac{4}{a+b+c+d};\dfrac{1}{c+d}+\dfrac{1}{a+b}\ge\dfrac{4}{a+b+c+d}\)
do đó \(VT\ge\dfrac{4\left(a+c\right)}{a+b+c+d}+\dfrac{4\left(b+d\right)}{a+b+c+d}=4\)
dấu = xảy ra khi a=b=c=d
Bài 1:
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ab-ac}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\end{matrix}\right.\)
\(M=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Bài 2:
\(a^3+b^3+c^3-3abc=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)(do \(a+b+c=0\))
\(\Rightarrow A=\dfrac{0}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}=0\)
chị giải thích cho em cái đoạn này với ạ
\(\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Áp dụng BĐT Cauchy - Schwarz vào bài toán , ta có :
\(Q=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{9}{\left(a+b+c\right)^2}=\dfrac{9}{1^2}=9\) Dấu " = " xảy ra khi : \(\dfrac{1}{a^2+2ab}=\dfrac{1}{b^2+2ac}=\dfrac{1}{c^2+2ab}\Leftrightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow Q_{Min}=9\Leftrightarrow a=b=c=\dfrac{1}{3}\)