10. Viết pt đường thẳng \(d\) trong các trường hợp sau:
a. \(d\) đi qua 2 điểm \(A,B\) với \(A\left(1;3\right)\) và \(B\left(2;4\right)\)
b.\(d\) đi qua 2 điểm \(C,D\) với \(C\left(-3;2\right)\) và \(D\left(2;3\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (d)//(d1)
=>(d): y=-2x+b
Thay x=2 và y=-3 vào (d), ta được:
b-4=-3
=>b=1
b: Vì (d) vuông góc (d2)
nên (d): y=x+b
Thay x=-1 và y=-2 vào (d), ta được:
b-1=-2
=>b=-1
a.
\(\overrightarrow{BA}=\left(4;7\right)\Rightarrow\) đường thẳng AB nhận (4;7) là 1 vtcp
Phương trình tham số AB: \(\left\{{}\begin{matrix}x=3+4t\\y=2+7t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(4;-7\right)\) \(\Rightarrow\) đường thẳng AB nhận (4;-7) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=-3+4t\\y=1-7t\end{matrix}\right.\)
a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)
b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)
c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)
(d): 2y+1=x
=>2y=x-1
=>y=1/2x-1/2
a: Gọi (d1): y=ax+b là phương trình đường thẳng AB
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\4a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{3}\\b=3-a=3+\dfrac{4}{3}=\dfrac{13}{3}\end{matrix}\right.\)
c: Gọi (d2): y=ax+b là phương trình đường thẳng cần tìm
Vì (d2) có hệ số góc là 5 nên a=5
Vậy: (d2): y=5x+b
Thay x=1 và y=3 vào (d2), ta được:
b+5=3
hay b=-2
d: Gọi (d3): y=ax+b là phương trình đường thẳng cần tìm
Vì (d3)//(d) nên a=-1/2
Vậy: (d3): y=-1/2x+b
Thay x=1 và y=3 vào (d3), ta được;
b-1/2=3
hay b=7/2
\(A\left(\sqrt{3}-\sqrt{2};1-\sqrt{6}\right)\in\left(d\right)\\ \Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)a+b=1-\sqrt{6}\left(1\right)B\left(\sqrt{2};2\right)\in\left(d\right)\\ \Leftrightarrow a\sqrt{2}+b=2\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a\sqrt{3}-a\sqrt{2}+b=1-\sqrt{6}\\a\sqrt{2}+b=2\end{matrix}\right.\)
Lấy 2 PT trừ nhau
\(\Leftrightarrow a\left(2\sqrt{2}-\sqrt{3}\right)=1+\sqrt{6}\\ \Leftrightarrow a=\dfrac{\sqrt{6}+1}{2\sqrt{2}-\sqrt{3}}=\dfrac{\left(\sqrt{6}+1\right)\left(2\sqrt{2}+\sqrt{3}\right)}{8-3}\\ \Leftrightarrow a=\dfrac{11\sqrt{2}+\sqrt{3}}{5}\\ \Leftrightarrow b=2-a\sqrt{2}=\dfrac{10-\sqrt{2}\left(11\sqrt{2}+\sqrt{3}\right)}{5}\\ \Leftrightarrow b=\dfrac{-12-\sqrt{6}}{5}\)
a: (d): y=ax+b
Theo đề, ta có hệ:
a+b=3 và 2a+b=4
=>a=1 và b=2
b: Theo đề, ta có hệ:
-3a+b=2 và 2a+b=3
=>a=1/5 và b=13/5