Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\overrightarrow{BA}=\left(4;7\right)\Rightarrow\) đường thẳng AB nhận (4;7) là 1 vtcp
Phương trình tham số của AB: \(\left\{{}\begin{matrix}x=3+4t\\y=2+7t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(4;-7\right)\Rightarrow\) đường thẳng AB nhận (4;-7) là 1 vtcp
Phương trình tham số AB: \(\left\{{}\begin{matrix}x=-3+4t\\y=1-7t\end{matrix}\right.\)
Vì (d) đi qua A(3;2) và có vecto pháp tuyến là vecto n(2;2) nên phương trình tham số là:
\(\left\{{}\begin{matrix}x=3+2t\\y=2+2t\end{matrix}\right.\)
Gọi d là đường thẳng bất kì qua B và H là hình chiếu vuông góc của A lên d
\(\Rightarrow d\left(A;d\right)=AH\)
Mà theo định lý đường xiên - đường vuông góc ta luôn có:
\(AH\le AB\Rightarrow AH_{max}=AB\) khi \(H\equiv B\) hay \(d\perp AB\)
\(\overrightarrow{AB}=\left(3;2\right)\Rightarrow d\) nhận \(\left(3;2\right)\) là 1 vtpt
Phương trình d:
\(3\left(x-2\right)+2\left(y-4\right)=0\Leftrightarrow3x+2y-14=0\)
a) Phương trình đường thẳng (d) qua A(4; 3) và B(2;- 1) có dạng tổng quát là y = ax + b, trong đó a, b là các hằng số cần xác định.
Vì A(4; 3) ∈ d nên ta có phương trình của (d), do đó ta có: 3 = a.4 + b.
Tương tự B(2;- 1) ∈ d nên ta có: - 1 = a.2 + b
Từ đó ta tìm được phương trình đường thẳng AB là: y = 2x - 5.
Phương trình đường thẳng AB là: y = 2x - 5.
b) Đáp số: y = - 1.
a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)
a.
\(\overrightarrow{BA}=\left(4;7\right)\Rightarrow\) đường thẳng AB nhận (4;7) là 1 vtcp
Phương trình tham số AB: \(\left\{{}\begin{matrix}x=3+4t\\y=2+7t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(4;-7\right)\) \(\Rightarrow\) đường thẳng AB nhận (4;-7) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=-3+4t\\y=1-7t\end{matrix}\right.\)