K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 8 2021

Đề bài không chính xác, chỉ có thể tìm d để biểu thức đạt GTNN chứ ko tồn tại đường thẳng để biểu thức đạt GTLN

24 tháng 8 2021

Dạ, cô giáo của em cũng mới sửa đề bài ạkhocroi

NV
21 tháng 7 2021

Đề bài sai, tổng OA+OB chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất

NV
22 tháng 7 2021

Do d cắt 2 trục, gọi pt d có dạng: \(y=ax+b\) (\(a\ne0\))

d đi qua M nên:  \(4a+b=1\Rightarrow b=-4a+1\Rightarrow y=ax-4a+1\)

Hoành độ A là nghiệm: \(ax_A-4a+1=0\Rightarrow x_A=\dfrac{4a-1}{a}\)

Tung độ B là nghiệm: \(y_A=a.0-4a+1=-4a+1\)

Do A; B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{4a-1}{a}>0\\-4a+1>0\end{matrix}\right.\) \(\Rightarrow a< 0\)

Khi đó ta có: \(\left\{{}\begin{matrix}OA=x_A=\dfrac{4a-1}{a}\\OB=y_A=-4a+1\end{matrix}\right.\)

\(S=OA+OB=\dfrac{4a-1}{a}-4a+1=5+\left(-4a+\dfrac{1}{-a}\right)\ge5+2\sqrt{\dfrac{-4a}{-a}}=9\)

\(S_{min}=9\) khi \(-4a=\dfrac{1}{-a}\Leftrightarrow a=-\dfrac{1}{2}\)

Phương trình d: \(y=-\dfrac{1}{2}x+3\)

NV
24 tháng 3 2021

Do d qua M nên pt có dạng: \(y=kx-2k+4\)

Tọa độ A: \(A\left(\dfrac{2k-4}{k};0\right)\) , tọa độ B: \(B\left(0;-2k+4\right)\)

Để A và B nằm trên tia Ox, Oy \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2k-4}{k}>0\\-2k+4>0\end{matrix}\right.\) \(\Rightarrow k< 0\)

Khi đó:

\(T=OA+OB=\dfrac{2k-4}{k}+\left(-2k+4\right)=6+2\left(-k+\dfrac{2}{-k}\right)\ge6+4\sqrt{\left(-k\right)\left(\dfrac{2}{-k}\right)}=6+4\sqrt{2}\)

Dấu "=" xảy ra khi \(-k=\dfrac{2}{-k}\Leftrightarrow k=-\sqrt{2}\)

Phương trình d: \(k=-\sqrt{2}x+4+2\sqrt{2}\)

21 tháng 7 2018

ta có : đường thẳng đi qua điểm \(M\left(4;9\right)\ne O\) \(\Rightarrow d\ne Ox;Oy\)

đặc : \(\left(d\right):ax+by+c=0\)

ta có : \(d\cap Ox\) tại \(\left(\dfrac{-c}{a};0\right)\)\(d\cap Oy\) tại \(\left(0;\dfrac{-c}{b}\right)\)

ta có \(\left(OA+OB\right)_{min}\Rightarrow\left(OA+OB\right)^2_{min}\)

\(\left(OA+OB\right)^2=OA^2+OB^2+2OA.OB=AB^2+2OAOB\)

\(\Rightarrow AB_{min}\) \(\Rightarrow\Delta_{ABC}\) vuông cân

ta có : \(d\) ở phần tư thứ nhất của mf\(xOy\) :

\(\Rightarrow\overrightarrow{I}\left(1;1\right)\) là véctơ pháp tuyến của đường thẳng

\(\Rightarrow\left(d\right):x-4+y-9=0\Leftrightarrow x+y-13=0\)

21 tháng 7 2018

Cho mk hỏi vậy Min = bao nhiêu v bạn