Tìm a, b, c biết: 4/a + b/c = 1/6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Ta cho: a+b+c+d=1(1)
a+c+d=5(2)
a+b+d=3(3)
a+b+c=6(4)
Từ (1) và (2) suy ra: \(b=1-5=-4\left(5\right)\)
Từ (1) và (3) suy ra: \(c=1-3=-2\left(6\right)\)
Từ (1) và (4) suy ra:\(d=1-5=-5\left(7\right)\)
Từ (5);(6) và (7) suy ra:\(a=1-\left[\left(-4\right)+\left(-2\right)+\left(-5\right)\right]\)
\(=1-\left(-11\right)\)
\(=1+11\)
\(=12\)
Vậy....
a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)
=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\)
=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)
=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)
=> a = -2,4 ; b = -1,6 ; c = -0,9
b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)
=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)
=> \(\frac{a}{20}=\frac{b}{18}\)(1)
Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)
Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)
=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)
=> a = -40 ; b = - 36 ; z = -30
a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)
\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)
b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)
\(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)
Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16
\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)
Cộng 3 biểu thức đã cho theo vế ta được:
\(2\left(A+B+C\right)=-4+\left(-6\right)+12=2\Leftrightarrow A+B+C=1\)
A+B+C=1 mà A+B=-4 suy ra C=5
Từ đó tính được A=7, B=-11
Vậy \(\hept{\begin{cases}A=7\\B=-11\\C=5\end{cases}}\)
Có: \(\hept{\begin{cases}A+B=-4\\B+C=-6\\C+A=12\end{cases}}\)
\(\Rightarrow2.\left(A+B+C\right)=\left(-4\right)+\left(-6\right)+12\)
\(2.\left(A+B+C\right)=2\)
\(\Leftrightarrow A+B+C=1\)
\(\Leftrightarrow12+B=1\)
\(\Leftrightarrow B=-11\)
\(\Leftrightarrow A-11=-4\)
\(\Leftrightarrow A=7\)
\(\Leftrightarrow C+7=12\)
\(\Leftrightarrow C=5\)
Vậy \(\hept{\begin{cases}A=7\\B=-11\\C=5\end{cases}}\)
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$
$=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b+3c}{2+6+12}=\frac{-20}{20}=-1$
$\Rightarrow a=2(-1)=-2; b=3(-1)=-3; c=4(-1)=-4$
2.
$S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{9900}$
$=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
a) Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right)\cdot2=-2\\b=\dfrac{\left(-1\right).6}{2}=-3\\c=\dfrac{\left(-1\right).12}{3}=-4\end{matrix}\right.\)
b) Ta có : \(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\).
Vậy : \(S=\dfrac{99}{100}.\)
a)\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=-\dfrac{20}{20}=-1\)
\(\left\{{}\begin{matrix}\dfrac{a}{2}=-1\Leftrightarrow a=-2\\\dfrac{b}{3}=-1\Leftrightarrow b=-3\\\dfrac{c}{4}=-1\Leftrightarrow c=-4\end{matrix}\right.\)
b)\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
Ta có:(a+b)+(b+c)+(c+a)=-4+(-6)+12=2
Hay 2(a+b+c)=2
=>a+b+c=1
Do đó:
a+b+c-(a+b)=1-(-4)
a+b+c-a-b=5
c=5(thỏa mãn) (thỏa mãn ở đây là thỏa mãn c nguyên)
Theo đề bài: b+c=-6
=>b+5=-6
=>b=-11(thỏa mãn)
Ta có: a+b+c=1
=>a+(-11)+5=1
a=1+11-5=7(thỏa mãn)
Vậy a=7.b=-11,c=5
Theo đầu bài ta có:
\(\frac{a-1}{2}=\frac{b+3}{4}=\frac{c-5}{6}\)
\(\Rightarrow\frac{5c-25}{30}=\frac{3a-3}{6}=\frac{4b+12}{16}\)
\(=\frac{\left(5c-25\right)-\left(3a-3\right)-\left(4b+12\right)}{30-6-16}\)
\(=\frac{\left(5c-3a-4b\right)-\left(25-3+12\right)}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}a=2\cdot2+1=5\\b=2\cdot4-3=5\\c=2\cdot6+5=17\end{cases}}\)
ko có đáp án phù hợp