K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x1+x2=-5/2; x1x2=-9/2

\(N=\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\dfrac{-5}{2}-2}{-\dfrac{9}{2}+\dfrac{5}{2}+1}\)

\(=\dfrac{-9}{2}:\left(-2+1\right)=\dfrac{-9}{2}:\left(-1\right)=\dfrac{9}{2}\)

3 tháng 4 2023

\(2x^2-3x-4=0\)

\(\Delta=3^2+4.2.4=41>0\)

⇒ Phương trình có hai nghiệm phân biệt

Theo Viét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=-2\end{matrix}\right.\)

Lại có : \(A=\left(\dfrac{1}{x_1}\right)^2+\left(\dfrac{1}{x_2}\right)^2=\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}\)\(=\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=\dfrac{\left(\dfrac{3}{2}\right)^2+4}{\left(-2\right)^2}=\dfrac{25}{16}\)

Vậy....

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Đề khó đọc quá. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

3 tháng 4 2023

\(x^2-2x-\sqrt{3}+1=0\)

\(\Delta'=1^2+\sqrt{3}-1=\sqrt{3}>0\)

⇒ Phương trình có hai nghiệm phân biệt

Theo Viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=1-\sqrt{3}\end{matrix}\right.\)

Ta có : \(A=x_1^2.x_2^2-2x_1x_2-x_1-x_2\)

              \(=\left(x_1x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)

               \(=\left(1-\sqrt{3}\right)^2-2\left(1-\sqrt{3}\right)-2=4-2\sqrt{3}-2+2\sqrt{3}-2=0\)

Vậy....

 

\(A=\dfrac{5x_1-x_2}{x_1}+\dfrac{5x_2-x_1}{x_2}\)

\(=\dfrac{5x_1\cdot x_2-x_2^2+5x_1x_2-x_1^2}{x_1x_2}\)

\(=\dfrac{10x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}{x_1x_2}\)

\(=\dfrac{10\cdot4-\left[5^2-2\cdot4\right]}{4}=\dfrac{40-25+8}{4}=\dfrac{23}{4}\)

4 tháng 6 2021

2x2-5x + 2m - 1 = 0  ( 1)

Dental = (-5)2 - 4*2*( 2m - 1)

           = 25 - 16m + 8

           = 33 - 16m

Phương trình (1) có 2 nghiệm phân biệt khi :

  33 - 16m > 0

 - 16m >-33

    m < 33/16

Theo hệ thức vi-ét ta có:

x1 + x2 = -b/a = 5/2

x1x2 = c/a =2m - 1/2

Theo bài ch0 :1/x1 + 1/x2 = 5/2

<=>2( x2 + x1   ) = 5x1x

<+> 2( 5/2 )  + 55 ( 2m - 1 ?

<+> 5 =  10m -5?2

 

<+> 

 

 

 

18 tháng 8 2021

1.

 \(x^2-5x+6=0\\ \Rightarrow x^2-2x-3x+6=0\\ \Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

2.

\(\left(x+4\right)^2-\left(3x-1\right)^2=0\\ \Rightarrow\left(x+4-3x+1\right)\left(x+4+3x-1\right)=0\\ \Rightarrow\left(-2x+5\right)\left(4x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}-2x+5=0\\4x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

3.

\(x^2-2x+24=0\\ \Rightarrow\left(x^2-2x+1\right)+23=0\\ \Rightarrow\left(x-1\right)^2+23=0\)

Vì (x-1)2≥0

23>0

\(\Rightarrow\left(x-1\right)^2+23>0\)

Vậy x vô nghiệm

4.

\(9x^2-4=0\\ \Rightarrow\left(3x-4\right)\left(3x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x-4=0\\3x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)

5.

\(x^2+2x-8=0\\ \Rightarrow\left(x^2+2x+1\right)-9=0\\ \Rightarrow\left(x+1\right)^2-3^2=0\\ \Rightarrow\left(x-2\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

13 tháng 1 2023

`1)` Ptr có: `\Delta=3^2-4.5.(-1)=29 > 0 =>`Ptr có `2` nghiệm phân biệt

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-3/5),(x_1.x_2=c/a=-1/5):}`

Có: `A=(3x_1+2x_2)(3x_2+x_1)`

     `A=9x_1x_2+3x_1 ^2+6x_2 ^2+2x_1x_2`

    `A=8x_1x_2+3(x_1+x_2)^2=8.(-1/5)+3.(-3/5)^2=-13/25`

Vậy `A=-13/25`

____________________________________________________

`2)` Ptr có: `\Delta'=(-1)^2-7.(-3)=22 > 0=>` Ptr có `2` nghiệm pb

 `=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2/7),(x_1.x_2=c/a=-3/7):}`

Có: `M=[7x_1 ^2-2x_1]/3+3/[7x_2 ^2-2x_2]`

     `M=[(7x_1 ^2-2x_1)(7x_2 ^2-2x_2)+9]/[3(7x_2 ^2-2x_2)]`

    `M=[49(x_1x_2)^2-14x_1 ^2 x_2-14x_1 x_2 ^2+4x_1x_2+9]/[3(7x_2 ^2-2x_2)]`

   `M=[49.(-3/7)^2-14.(-3/7)(2/7)+4.(-3/7)+9]/[3x_2(7x_2-2)]`

   `M=6/[x_2(7x_2-2)]`   `(1)`

Có: `x_1+x_2=2/7=>x_1=2/7-x_2`

 Thay vào `x_1.x_2=-3/7 =>(2/7-x_2)x_2=-3/7`

      `<=>-x_2 ^2+2/7 x_2+3/7=0<=>x_2=[1+-\sqrt{22}]/7`

`@x_2=[1+\sqrt{22}]/7=>M=6/[[1+\sqrt{22}]/7(7 .[1+\sqrt{22}]/2-2)]=2`

`@x_2=[1-\sqrt{22}]/7=>M=6/[[1-\sqrt{22}]/7(7 .[1-\sqrt{22}]/2-2)]=2`

Vậy `M=2`