Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-3x-4=0\)
\(\Delta=3^2+4.2.4=41>0\)
⇒ Phương trình có hai nghiệm phân biệt
Theo Viét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=-2\end{matrix}\right.\)
Lại có : \(A=\left(\dfrac{1}{x_1}\right)^2+\left(\dfrac{1}{x_2}\right)^2=\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}\)\(=\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=\dfrac{\left(\dfrac{3}{2}\right)^2+4}{\left(-2\right)^2}=\dfrac{25}{16}\)
Vậy....
\(x^2-2x-\sqrt{3}+1=0\)
\(\Delta'=1^2+\sqrt{3}-1=\sqrt{3}>0\)
⇒ Phương trình có hai nghiệm phân biệt
Theo Viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=1-\sqrt{3}\end{matrix}\right.\)
Ta có : \(A=x_1^2.x_2^2-2x_1x_2-x_1-x_2\)
\(=\left(x_1x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)
\(=\left(1-\sqrt{3}\right)^2-2\left(1-\sqrt{3}\right)-2=4-2\sqrt{3}-2+2\sqrt{3}-2=0\)
Vậy....
nhiệm là cái gì? Đề ko rõ nữa vì M = (1 - x2)x1 + (1 - x1)x2 chả có gì để cm cả :v
\(x^2+1-12=0\)
Theo Vi - ét , ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=0\\x_1x_2=\dfrac{c}{a}=-11\end{matrix}\right.\)
Ta có :
\(A=x_1^2+x_2^2+x_1^2x_2+x_1x^2_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2\left(x_1+x_2\right)\)
\(=0^2-2\left(-11\right)-11\left(0\right)\)
\(=22-11\)
\(=11\)
Vậy \(A=11\)
x1+x2=-5/2; x1x2=-9/2
\(N=\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1+x_2-2}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\dfrac{-5}{2}-2}{-\dfrac{9}{2}+\dfrac{5}{2}+1}\)
\(=\dfrac{-9}{2}:\left(-2+1\right)=\dfrac{-9}{2}:\left(-1\right)=\dfrac{9}{2}\)
xét ptr \(2x^2-x-3+0\)
△=\(\left(-1\right)^2-4.2.\left(-3\right)=25>0\)
⇒ptr có 2 ngh phân biệt \(x_1;x_2\)
Theo hệt thức viet \(x_1+x_2=\dfrac{1}{2};x_1x_2=\dfrac{-3}{2}\)
Xét A = \(x_1^2+x_2^2-x_1^2x_2^2=\left(x_1+x_2\right)^2-2x_1x_2-x_1^2x_2^2\)
=\(\left(\dfrac{1}{2}\right)^2-2\left(-\dfrac{3}{2}\right)-\left(-\dfrac{3}{2}\right)^2=\dfrac{1}{4}+3-\dfrac{9}{4}=3-2=1\)
Của cậu đây ạ, kh hiểu j thì hỏi tớ nha <3
Đề khó đọc quá. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.