Cho hình thang ABCD (AB//CD) O là trung điểm 2 đường chéo. Biết diện tích AOB= 9cm2, diện tích COD=16cm2.
a) Diện tích △AOD,△BOC.
b) Diện tích hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ABssCD\Rightarrow\dfrac{AB}{CD}=\dfrac{OB}{OD}=\dfrac{OA}{OC}=\dfrac{2}{3}\)
a)\(S_{AOD}=\dfrac{1}{2}OA.OD.sinAOB\)
\(S_{BOC}=\dfrac{1}{2}OB.OC.sinBOC\)
\(\Rightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{OA.OD}{OB.OC}\) vì \(\widehat{AOD}=\widehat{BOC}\Rightarrow sinAOD=sinBOC\)
\(\Leftrightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{2}{3}.\dfrac{3}{2}=1\)
b) vì \(ABssCD\Rightarrow\dfrac{OH}{OK}=\dfrac{2}{3}\Rightarrow\dfrac{OH}{HK}=\dfrac{2}{5}\)
\(S_{AOB}=\dfrac{1}{2}.OH.AB\\ S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{1}{2}\left(AB+\dfrac{3}{2}AB\right).HK=\dfrac{1}{2}.\dfrac{5}{2}AB.HK\)
\(\Rightarrow\dfrac{S_{AOB}}{S_{ABCD}}=\dfrac{\dfrac{1}{2}OH.AB}{\dfrac{1}{2}HK.\dfrac{5}{2}AB}=\dfrac{2}{5}.\dfrac{1}{\dfrac{5}{2}}=\dfrac{4}{25}\)
\(\Rightarrow S_{ABCD}=\dfrac{4}{\dfrac{4}{25}}=25\)
Kẻ BE ⊥ DC ( E ∈ DC ) ⇒ ∠BEC = 90o
AH ⊥ DC ( gt ) ⇒ ∠AHD = 90o
Vì ABCD là hình thang cân nên AD = BC , ∠D = ∠C
Xét ΔAHD và ΔBEC có AD = BC , ∠D = ∠C , ∠AHD = ∠BEC ( =90o )
⇒ ΔAHD = ΔBEC ( g.c.g )
⇒ DH = EC , AH = BE = 8 cm
BE ⊥ DC, AH ⊥ DC ⇒ AH // BE
Xét tứ giác ABEH có AH // BE, AH = BE
⇒ ABEH là hình bình hành ⇒ AB = HE = HC - EC = HC - DH = 12 - DH
Diện tích hình thang ABCD là
\(\dfrac{DC+AB}{2}\).AH=\(\dfrac{DC+12-DH}{2}\).AH = \(\dfrac{HC+12}{2}\).AH=\(\dfrac{12+12}{2}\).8=96cm2
Vậy SABCD = 96cm2