Từ điểm A nắm ngoài (O, R) vẽ tiếp tuyến AB, dây cung BC vuông góc OA tại H. a) Chứng minh H là trung điểm BC và AC là tiếp tuyến (O) b) Vẽ đường kính BD của (O), AD cắt (O) tại K. Chứng minh AH. AO = AK. AD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của BC và OH là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
góc BOA=góc COA
OA chung
=>ΔOBA=ΔOCA
=>góc OBA=góc OCA=90 độ
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBKD nội tiếp
BD là đường kính
=>ΔBKD vuông tại K
Xét ΔBAD vuông tại B có BK là đường cao
nên AK*AD=AB^2
=>AK*AD=AH*AO