Cho biểu thức A=-4/n-1 ( với n thuộc Z )
Tìm các số nguên n để A có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
\(A=\frac{3n-2}{n-1}=\frac{3n-3+2}{n-1}=\frac{3.\left(n-1\right)+1}{n-1}=3+\frac{1}{n-1}\)
Để A là số nguyên thì n - 1 là ước nguyên của 1
\(n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
Ai thấy đúng thì ủng hộ nha !!!
Ta có A= 3n-2/ n-1 = 3n-3+1/ n-1 = 3(n-1)/n-1 + 1/n-1 = 3+ 1/n-1
để A thuộc Z = > 3 + 1/n-1 thuộc z => 1/n-1 thuộc Z => 1 chia hết cho n-1 => (n-1) thuộc Ư(1)
=> n-1 thuộc {-1;1}
=> n thuộc {0; 2}
a, A là phân số chỉ khi \(2n-4\ne0\Rightarrow n\ne2\)
b, A \(\in Z\)\(\Leftrightarrow2n+2⋮2n-4\Leftrightarrow2n-4=6\Rightarrow6⋮2n-4\)
Vì \(2n-4\)là số chẵn nên :
\(2n-4=-6\Rightarrow2n=-2\Rightarrow n=-1\text{và }A=0\)
\(2n-4=-2\Rightarrow2n=2\Rightarrow n=1\text{và }A=-2\)
\(2n-4=2\Rightarrow2n=6\Rightarrow n=3\text{và }A=4\)
\(2n-4=6\Rightarrow2n=10\Rightarrow n=5\text{và }A=2\)
Vậy ....
a) Để A là phân số thì : 2n - 4 ≠ 0=>n ≠ 2
Vậy với n ≠ 2 thì A là phân số
b) Ta có A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2
Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)
n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1
Vậy n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.
A nguyên <=> n-1 là ước của 3
n-1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
Vậy n=-2;0;2;4 thì A nguyên
Để biểu thức A đạt giá trị nguyên
<=> 3 chia hết cho n-1
Vì 3 chia hết n-1
=> n-1 thuộc Ư(3)={-3;-1;1;3}
Ta có bảng sau:
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vậy các giá trị nguyên n thỏa mãn là -2;0;2;4
Ai k mik mik k lại. Chúc các bạn thi tốt
\(a)\) Để A là một phân số thì \(n-3\ne0\) \(\Leftrightarrow\) \(n\ne3\)
\(b)\)Thay \(n=-2\) vào A ta được :
\(A=\frac{4}{-2-3}=\frac{4}{-5}=\frac{-4}{5}\)
Vậy ...
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà để A nguyên thì \(\frac{3}{n-2}\)nguyên
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm3;\pm1\right\}\Leftrightarrow n\in\left\{\pm1;3;5\right\}\)
Vậy ......
hihi mik chẳng hiểu gì cả cậu có thể giải thích dễ hiểu hơn ko
de 4/n-1 co gia tri la so nguyen khi va chi khi 4 chia het cho n-1
=>n-1e{-4;-1;1;4}
=>ne{-3;0;2;5}
con lai la cau ket luan nha