Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt
a, A là phân số chỉ khi \(2n-4\ne0\Rightarrow n\ne2\)
b, A \(\in Z\)\(\Leftrightarrow2n+2⋮2n-4\Leftrightarrow2n-4=6\Rightarrow6⋮2n-4\)
Vì \(2n-4\)là số chẵn nên :
\(2n-4=-6\Rightarrow2n=-2\Rightarrow n=-1\text{và }A=0\)
\(2n-4=-2\Rightarrow2n=2\Rightarrow n=1\text{và }A=-2\)
\(2n-4=2\Rightarrow2n=6\Rightarrow n=3\text{và }A=4\)
\(2n-4=6\Rightarrow2n=10\Rightarrow n=5\text{và }A=2\)
Vậy ....
a) Để A là phân số thì : 2n - 4 ≠ 0=>n ≠ 2
Vậy với n ≠ 2 thì A là phân số
b) Ta có A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2
Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)
n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1
Vậy n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)