Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đk n khác 1
b, \(\Rightarrow n-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Ta có: \(A=-\dfrac{4}{n-1}\)
a) Để \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)
b) Để \(A\in Z\) thì \(n-1\inƯ\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
a) Vì -3; n- 1 nên M là phân số nếu n – 1 khác 0 => n khác 1
b) Với n = 3 => M = − 3 3 − 1 = − 3 2
Với n = 5 => M = − 3 5 − 1 = − 3 4 và n = -4 => M = − 3 − 4 − 1 = − 3 − 5
a, đk : n khác 2
b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)
Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
a: Để phân số A có nghĩa thì n-2<>0
hay n<>2
b: Thay n=0 vào A, ta được:
\(A=\dfrac{0+4}{0-2}=-2\)
Thay n=-2 vào A, ta được:
\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Thay n=4 vào A, ta được:
\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
Ta có: \(A=\dfrac{4}{n-3}\left(n\in Z\right)\)
a) Để \(A\) là phân số thì \(n-3\ne0\Leftrightarrow n\ne3\)
b) Để \(A\in Z\Rightarrow\left(n-3\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{4;3;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;3;5;1;7;-1\right\}\) thì \(A\in Z\)
a: Để A là phân số thì n-3<>0
hay n<>3
b: Để A là số nguyên thì \(n-3\inƯ\left(4\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
a: Để A là phân số thì n+3<>0
hay n<>-3
b: Để A là số nguyên thì \(2n+6-2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-2;-4;-1;-5\right\}\)
\(A=-\frac{4}{n-1}\inℤ\Leftrightarrow n-1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-3,-1,0,2,3,5\right\}\).
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt