cho b và c là hai số thỏa mãn \(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)
Chứng minh ít nhất một trong hai phương trình sau phải có nghiệm:
(1) \(x^2-\left(3m+2\right)x+12=0\)
(2)\(4x^2-\left(9m-2\right)x+36=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để Vì (1) = 0 , (2) = 0
=> \(2x^2-\left(3m+2\right)x+12=4x^2-\left(9m-2\right)x+36\) = 0
\(\Leftrightarrow2x^2-3mx-2x+12=4x^2-9mx+2x+36=0\)
\(\Leftrightarrow6mx=2x^2+4x+24=0\)
\(\Leftrightarrow3mx=x^2+2x+12=0\) (*)
Vì \(x^2+2x+12=x^2+2x+1+11=\left(x+1\right)^2+11\ge11\) , mâu thuẫn với (*)
=> Không tìm được điều kiện để hai phương trình có 1 nghiệm chung
Sửa đề: a + 2b + 3c = 1
Xét: \(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)
có: \(\Delta_1'=4\left(2a+1\right)^2-4\left(4a^2+192abc+1\right)=16a-768abc=16a\left(1-48bc\right)\)
Xét \(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)
có: \(\Delta_1'=4\left(2b+1\right)^2-4\left(4b^2+96abc+1\right)=16b-384abc=16b\left(1-24ac\right)\)
Ta lại xét: \(\left(1-48bc\right)+\left(1-24ac\right)=2-24c\left(a+2b\right)\)
\(=2-24c\left(1-3c\right)=2\left(36c^2-12c+1\right)=2\left(6c-1\right)^2\ge0\)với mọi c
=> Tồn tại ít nhất 1 trong 2 số: \(\left(1-48bc\right);\left(1-24ac\right)\) không âm
Vì a và b không âm
=> Tồn tại ít nhất 1 trong 2 số : \(16a\left(1-48bc\right);16b\left(1-24ac\right)\)không âm
=> Tồn tại it nhất 1 trong 2 \(\Delta_1';\Delta_2'\)không âm
=> Có ít nhất 1 trong 2 phương trình trên có nghiệm.
b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)
Theo vi et ta có
\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)
Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)
\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)
\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)
\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)
\(=p^2-pq-pq+1+q^2-2+1\)
\(=p^2-2pq+q^2=\left(p-q\right)^2\)
a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)
Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)
\(=m^2+n^2-mn-m-n+1\)
\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)
Vậy có 1 trong 2 phương trình có nghiệm