Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Vi-ét ta có:
(1) a+b=-p và ab=1
(2) c+d=-q và cd=1
Biến đổi vế trái VT= [(a-c)(b+d)][(b-c)(a+d)]=(ab+ad-bc-cd)(ab-cd-ac+bd)=(ad-bc)(bd-ac)=abd2-a2cd-b2cd+c2ab=d2-a2-b2+c2
mà q2-p2=(c+d)2-(a+b)2=c2+d2+2cd-a2-b2-2ab=d2-a2-b2+c2
Nên VT=VP
Áp dụng viet vào pt \(x^2+px+1=0\) ta được:\(\left\{{}\begin{matrix}a+b=-p\\ab=1\end{matrix}\right.\)
Áp dụng viet vào pt \(x^2+qx+2=0\) ta được:\(\left\{{}\begin{matrix}b+c=-q\\bc=2\end{matrix}\right.\)
\(A=pq-\left(b-a\right)\left(b-c\right)=-\left(a+b\right).-\left(b+c\right)-\left(b^2-bc-ab+ac\right)\)
\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)
\(=2ab+2bc=6\)
Phương trình: \(x^2+px+1=0\)
Có 2 nghiệm:a,b
\(\Rightarrow\left\{{}\begin{matrix}a+b=-p\\a.b=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}p=-\left(a+b\right)\\1=a.b\end{matrix}\right.\)
Phương trình \(x^2+px+2=0\)
Có 2 nghiệm:b,c
\(\Rightarrow\left\{{}\begin{matrix}b+c=-q\\b.c=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}q=-\left(b+c\right)\\2=b.c\end{matrix}\right.\)
Ta có: \(p.q-\left(b-a\right)\left(b-c\right)\)
\(=-\left(a+b\right).\left[-\left(b+c\right)\right]-\left(b-a\right)\left(b-c\right)\)
\(=\left(a+b\right)\left(b+c\right)-\left(b-a\right)\left(b-c\right)\)
\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)
=\(\left(ab+ab\right)+\left(ac-ac\right)+\left(b^2-b^2\right)+\left(bc+bc\right)\)
\(=2ab+2bc\)
\(=2.1+2.2\)
=6
-Chúc bạn học tốt-
a. Với \(m=1;n=\sqrt{2}\)thay vào phương trình ta có
\(x^2+\left(\sqrt{2}+1\right)x+\sqrt{2}=0\Leftrightarrow x\left(x+\sqrt{2}\right)+\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\sqrt{2}\end{cases}}\)
Vậy với \(m=1;n=\sqrt{2}\)thì phương trình có 2 nghiệm \(x=-1;x=-\sqrt{2}\)
b. Ta có \(\Delta=\left(mn+1\right)^2-4mn=m^2n^2+2mn+1-4mn=m^2n^2-2mn+1\)
\(=\left(mn-1\right)^2>0\forall m,n\)
Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m;n
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+4-8m+12\)
\(=4m^2-16m+16\)
\(=\left(2m-4\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0
hay m<3/2
c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=2m-3\)
\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)
\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)
\(\Leftrightarrow8m^2-16m+8-18m+27=0\)
\(\Leftrightarrow8m^2-34m+35=0\)
\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)
b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)
Theo vi et ta có
\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)
Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)
\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)
\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)
\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)
\(=p^2-pq-pq+1+q^2-2+1\)
\(=p^2-2pq+q^2=\left(p-q\right)^2\)
a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)
Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)
\(=m^2+n^2-mn-m-n+1\)
\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)
Vậy có 1 trong 2 phương trình có nghiệm