Tìm số tự nhiên nhỏ nhất chia cho 8,10,15,20 theo thứ tự dư 5,7,12,17 và chia hết cho 41
Tìm số nguyên tố, biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi so nuyen to can tim la a (a>2)
Vì tổng của hai số nguyên tố \(\ge3\) và bằng hiệu của hai số nguyên tố \(\ge\)3 đều là các số chẵn >2
=>a=2+b và a=c-2 Voi b;c là số nguyên tố
+)nếu a=3k +1 (k thuoc N *) = >c=a+2=3k+3=3(k+1) la hop so => loại
+)nếu a=3k+2(k thuoc N * ) => b=a-2=3k so ngueyn toneu k=1 voi k>1 thi b la so nen loại
k=1 thi b=3 ; a=5 ; ;c=7 chọn
Vay so do la 5
****
dễ thấy p>2 nên p là số lẻ
vì p vừa là tổng,vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn,còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là số nguyên tố)
mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3
Nếu a=3=>p=5;b=7
Nếu p=3=>a=1(ko là số nguyên tố)
nếu b=3=>p=1(ko là số nguyên tô
Vậy số nguyên tố cần tìm là 5
tick nhé
gọi số tự nhiên nhỏ nhất đó là a .(a ϵ N;a \(\ge\) 20)
vì khi chia cho 8,10,15,20 dư lần lượt là 5,7,12,17
=>a+3\(⋮\)8;10;15;20
=>a+3ϵBC(8;10;15;20)
ta có :
8=23
10=2.5
15=3.5
20=22.5
=>BCNN(8;10;15;20)=23.3.5=120
=>BC(8;10;15;20)={0;120;240;360;...;4680;4800;4920.....}
=>aϵ{-3;117;237;357;....;4677;4797;4917;.....}
Mà a\(⋮\)41 Trong các số trên ta chỉ thấy 4797 \(⋮\)41
Vậy số cần tìm là 4797.
Gọi số tự nhiên cần tìm là a
Theo đề cho ta có :
a : 8 ( dư 5 )
a : 10 ( dư 7 )
a : 15 ( dư 12 )
a : 20 ( dư 17 )
\(\Rightarrow\) a + 3 \(⋮\) 8; 10; 15; 20
\(\Rightarrow\) a + 3 \(\in\) BC( 8; 10; 15; 20 )
Ta có:
8 = 23
10 = 2 x 5
15 = 3 x 5
20 = 22 x 5
\(\Rightarrow\) BCNN( 8; 10; 15; 20 ) = 23 x 3 x 5 = 120
\(\Rightarrow\) BC( 8; 10; 15; 20 ) = B(120) = { 0; 120; 240; 360; .....}
\(\Rightarrow\) a + 3 \(\in\) { 0; 120; 240; 360; .....}
\(\Rightarrow\) a \(\in\) { -3; 117; 237; 357; ......}
Mà a \(⋮\) 41
Nên a = 4797
Vậy số tự nhiên cần tìm là 4797
Mk hướng dẫn thôi chứ ko còn thời gian nx
Đầu tiên bạn lấy x+n sao cho x+n chia hết cho 8;10;15;20
Sau đó bạn tìm BCNN(các số trên)
Sau đó bạn lấy BCNN(các số trên)-n là ra
2, GỌi UCLN(2x+1;6x+5)=d
Ta có:
2x+1 chia hết cho d
6x+5 chia hết cho d
=> 6x+5-3(2x+1) chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Nhưng ta có: 6x+5;2x+1 là các số lẻ
=> d =1
=> (ĐPCM)
Gọi ƯCLN( 2x+1, 6x+5) là d
- 2x+1 chia hết cho d hay 3.(2x+1) chia hết cho d = 6x+3 chia hết cho d
( chia hết bạn viết kí hiệu của dấu chia hết nha)
- 6x+5 chia hết cho d
Ta có : ( 6x+5)-( 6x+3) chia hết cho d
= 6x+5 - 6x+3 chia hết cho d
= 2 chia hết cho d
=> d thuộc tập hợp 1;2
( d thuộc tập hợp 1;2 bn viết kí hiệu nha)
Mà 6x+5 và 2x+1 là số lẻ nên d = 1
Vậy UwCLN ( 2x+1, 6x+5) = 1 hay hai số 2x+1 và 6x+5 là hai số nguyên tố cùng nhau.
Ta có: a:8;10;15;20 dư 5;7;12;17 suy ra a+2 chia hết cho 8;10;15;20
suy ra a+2 thuộc BCNN(8;10;15;20)
8=23 ; 10=2.5 ; 12=22.3 ; 17=17.1
BCNN(8;10;12;17)=23.3.5.17=680
suy ra a+2=680
=678
Vậy số cần tìm là 678