chứng minh rằng tổng bình phương của hai số nguyên chia hết cho 3 thì mỗi số đó chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 2 số nguyên bình phương đó lần lượt là a2, b2. Vì tổng 2 số trên chia hết cho 7 nên 2 số đó chia hết cho 7. Vì trong phép nhân chỉ cần có một số chia hết cho d (d thuộc N) thì phép nhân đó chia hết cho d. Vậy a2 = a . a nên a chia hết cho 7, b2 = b . b nên b chia hết cho 7.
- Vậy 2 số nguyên tố đó chia hết cho 7.
a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+b3 chia hết cho 3
gọi 2 số đó là x;y(x;y∈∈Z)
ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)
do x+y⋮⋮3 => DPCM
Chúc làm bài tốt
Gọi 2 số đó là x;y (x;y∈Z)
Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)
Do x+y 3 => ..........
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
vì 3a^3 , 6a chia hết cho 3 nên..
Trả lời
dễ mà gọi 2 số đó là x;y(x;yZ)
ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Vì \(x+y⋮3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)
\(\Rightarrow x^3+y^3⋮3\)( đpcm )
Chứng minh rằng nếu tổng 3 số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Gọi 3 số nguyên đó là a,b,c
Ta có: a+b+c chia hết cho 3
Xét hiệu a3+b3+c3-(a+b+c)
=a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c) (1)
a3-a=a(a2-1)=(a-1)a(a+1) là tích 3 SN liên tiếp nên chia hết cho 3
tương tự ta cũng có b3-b và c3-c đều chia hết cho 3
Do đó VP (1) chia hết cho 3 => a3+b3+c3 chia hết cho 3
Vậy............
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
Gọi 2 số là \(x , y ( x , y ∈ Z )\)
Theo đề , ta có :
\((x^2+y^2)⋮ 3\)
Do số chính phương chia 3 dư 0 hoặc 1 , Nên :
\(\left\{{}\begin{matrix}x^2:3\text{ dư 0 hoặc 1}\\y^2:3\text{dư 0 hoặc 1 }\end{matrix}\right.\)
Maf \((x^2+y^2)⋮ 3\)
\(\left\{{}\begin{matrix}x^2\text{ ⋮}3\\y^2\text{ ⋮}3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\text{ ⋮}3\\y\text{ ⋮}3\end{matrix}\right.\)
\(⇒ đ p c m\)