K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

Gọi 2 số là \(x , y ( x , y ∈ Z )\)

Theo đề , ta có :

\((x^2+y^2)⋮ 3\)

Do số chính phương chia 3 dư 0 hoặc 1 , Nên : 

\(\left\{{}\begin{matrix}x^2:3\text{ dư 0 hoặc 1}\\y^2:3\text{dư 0 hoặc 1 }\end{matrix}\right.\)

Maf \((x^2+y^2)⋮ 3\)

\(\left\{{}\begin{matrix}x^2\text{ ⋮}3\\y^2\text{ ⋮}3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x\text{ ⋮}3\\y\text{ ⋮}3\end{matrix}\right.\)

\(⇒ đ p c m\)

1 tháng 11 2016

Cho 2 số nguyên bình phương đó lần lượt là a2, b2. Vì tổng 2 số trên chia hết cho 7 nên 2 số đó chia hết cho 7. Vì trong phép nhân chỉ cần có một số chia hết cho d (d thuộc N) thì phép nhân đó chia hết cho d. Vậy a2 = a . a nên a chia hết cho 7, b2 = b . b nên b chia hết cho 7.

- Vậy 2 số nguyên tố đó chia hết cho 7.

2 tháng 11 2016

theo tôi ko phải thế

14 tháng 2 2015

a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+bchia hết cho 3

18 tháng 10 2019

gọi 2 số đó là x;y(x;y∈∈Z)

ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)

do x+y⋮⋮3 => DPCM

Chúc làm bài tốt

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^ 

18 tháng 12 2016

Gọi 2 số đó là x;y (x;yZ)

Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)

Do x+y 3 => ..........

25 tháng 5 2017

3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a

vì 3a^3 , 6a chia hết cho 3 nên..

20 tháng 3 2019

Tội nghiệp thanh niên , 3 năm r mà dell cs ma nào trả lời 

Trả lời 

dễ mà gọi 2 số đó là x;y(x;yZ)

ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Vì \(x+y⋮3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)

\(\Rightarrow x^3+y^3⋮3\)( đpcm )

2 tháng 10 2016

Gọi 3 số nguyên đó là a,b,c

Ta có: a+b+c chia hết cho 3

Xét hiệu a3+b3+c3-(a+b+c)

=a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c) (1)

a3-a=a(a2-1)=(a-1)a(a+1) là tích 3 SN liên tiếp nên chia hết cho 3

tương tự ta cũng có b3-b và c3-c đều chia hết cho 3

Do đó VP (1) chia hết cho 3 => a3+b3+c3 chia hết cho 3

Vậy............

2 tháng 10 2016

gdfgdfgfg

9 tháng 8 2015

1) Gọi 2 số lẻ đó là a và b.

Ta có:

\(a^3-b^3\) chia hết cho 8 

=>  \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8

=> \(\left(a-b\right)\) chia hết cho 8    (đpcm)

10 tháng 10 2016

8 k minh