Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá
Gọi chữ số hàng chục và hàng đơn vị của số là a
Khi đó chữ số hàng trăm của số đó là 7 - 2 * a ( vì tổng các chữ số của số đó là 7 )
Do đó số đó có dạng :\(\overline{\left(7-2\times a\right)aa}=100\times\left(7-2\times a\right)+10\times a+a\)
\(=700-200\times a+10\times a+a\)
\(=700-190\times a+a\)
\(=700-189\times a\)
Ta có : \(700⋮7;189⋮7\Rightarrow700-189\times a⋮7\)
Vậy số đó chia hết cho 7
Gọi số đó là Aef\(\left(\overline{ef}⋮4\right)\)
Ta có : \(\overline{Aef}=10^n\times d+\overline{ef}=4\times25\times10^{n-1}\times d+\overline{ef}\)( với n là số mũ của A )
Vì : \(4⋮4;\overline{ef}⋮4\)
\(\Rightarrow10^n\times d+\overline{ef}⋮4\)
\(\Rightarrow\overline{Aef}⋮4\)
Vậy nếu 1 số có 2 chữ số tận cùng chia hết cho 4 thì số đó chia hết cho 4
Chọn khẳng định Sai trong các khẳng định sau:
A. Nếu mỗi số hạng của tổng chia hết cho 6 thì tổng chia hết cho 6.
B. Nếu mỗi số hạng của tổng không chia hết cho 6 thì tổng không chia hết cho 6.
C. Nếu tổng của hai số chia hết cho 5 và một trong hai số đó chia hết cho 5 thì số còn lại chia hết cho 5.
D. Nếu hiệu của hai số chia hết cho 7 và một trong hai số đó chia hết cho 7 thì số còn lại chia hết cho 7
Đáp án là B
Cho 2 số nguyên bình phương đó lần lượt là a2, b2. Vì tổng 2 số trên chia hết cho 7 nên 2 số đó chia hết cho 7. Vì trong phép nhân chỉ cần có một số chia hết cho d (d thuộc N) thì phép nhân đó chia hết cho d. Vậy a2 = a . a nên a chia hết cho 7, b2 = b . b nên b chia hết cho 7.
- Vậy 2 số nguyên tố đó chia hết cho 7.
theo tôi ko phải thế