Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+b3 chia hết cho 3
gọi 2 số đó là x;y(x;y∈∈Z)
ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)
do x+y⋮⋮3 => DPCM
Chúc làm bài tốt
Gọi 2 số đó là x;y (x;y∈Z)
Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)
Do x+y 3 => ..........
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
vì 3a^3 , 6a chia hết cho 3 nên..
Trả lời
dễ mà gọi 2 số đó là x;y(x;yZ)
ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Vì \(x+y⋮3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)
\(\Rightarrow x^3+y^3⋮3\)( đpcm )
3 số đó là:
6a+6b+6c
ta có (6a)3+(6b)3+(6c)3
=216a3+216b3+216c3
=6(36a3+36b3+36c3)
=>6(36a3+36b3+36c3) chia hết cho 6 =>(6a)3+(6b)3+(6c)3 chia hết cho 6
=> ĐPCM
tự biên tự diễn thôi:
a/ gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3
ta có a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]= (a+b)[(a+b)^2-3ab]0,5
vì a+b chia hết cho 3 nên (a+b)^2-3ab chia hết cho 3
do vậy (a+b)[(a+b)^2-3ab] chia hết cho 3
ai làm câu b
có a^3 + b^3 + c^3 chia hết cho 9 (1)
giả sử a , b , c đều không chia hết cho 3 ( có dạng B(3) +_ 1 )
=> a^3 , b^3 , c^3 , đều có dạng B(9)+_ 1
do đó a^3 + b^3 + c^3 +r1 + r2 + r3 ( trong đó r1;r2;r3 bằng -1 hoặc 1 )
=> a^3 + b^3 + c^3 không chia hết cho 9 . ( trái với điều (1) )
=> 1 trong 3 số a, b, c, là bội của 3
Gọi 3 số nguyên đó là a,b,c
Ta có: a+b+c chia hết cho 3
Xét hiệu a3+b3+c3-(a+b+c)
=a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c) (1)
a3-a=a(a2-1)=(a-1)a(a+1) là tích 3 SN liên tiếp nên chia hết cho 3
tương tự ta cũng có b3-b và c3-c đều chia hết cho 3
Do đó VP (1) chia hết cho 3 => a3+b3+c3 chia hết cho 3
Vậy............
gdfgdfgfg