K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Gọi 3 số nguyên đó là a,b,c

Ta có: a+b+c chia hết cho 3

Xét hiệu a3+b3+c3-(a+b+c)

=a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c) (1)

a3-a=a(a2-1)=(a-1)a(a+1) là tích 3 SN liên tiếp nên chia hết cho 3

tương tự ta cũng có b3-b và c3-c đều chia hết cho 3

Do đó VP (1) chia hết cho 3 => a3+b3+c3 chia hết cho 3

Vậy............

2 tháng 10 2016

gdfgdfgfg

14 tháng 2 2015

a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+bchia hết cho 3

18 tháng 10 2019

gọi 2 số đó là x;y(x;y∈∈Z)

ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)

do x+y⋮⋮3 => DPCM

Chúc làm bài tốt

18 tháng 12 2016

Gọi 2 số đó là x;y (x;yZ)

Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)

Do x+y 3 => ..........

25 tháng 5 2017

3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a

vì 3a^3 , 6a chia hết cho 3 nên..

20 tháng 3 2019

Tội nghiệp thanh niên , 3 năm r mà dell cs ma nào trả lời 

Trả lời 

dễ mà gọi 2 số đó là x;y(x;yZ)

ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

Vì \(x+y⋮3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)

\(\Rightarrow x^3+y^3⋮3\)( đpcm )

3 tháng 7 2015

3 số đó là:

6a+6b+6c

ta có (6a)3+(6b)3+(6c)3

=216a3+216b3+216c3

=6(36a3+36b3+36c3)

=>6(36a3+36b3+36c3) chia hết cho 6 =>(6a)3+(6b)3+(6c)chia hết cho 6 

=> ĐPCM

28 tháng 8 2015

tự biên tự diễn thôi:

a/  gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3

ta có a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]= (a+b)[(a+b)^2-3ab]0,5

vì a+b chia hết cho 3 nên (a+b)^2-3ab chia hết cho 3

do vậy (a+b)[(a+b)^2-3ab] chia hết cho 3

ai làm câu b

13 tháng 8 2017

có a^3 + b^3 + c^3 chia hết cho 9 (1)

giả sử a , b , c đều không chia hết cho 3 ( có dạng B(3) +_ 1 )

=> a^3 , b^3 , c^3 , đều có dạng B(9)+_ 1

do đó a^3 + b^3 + c^3 +r1 + r2 + r3 ( trong đó r1;r2;r3 bằng -1 hoặc 1 )

=> a^3 + b^3 + c^3 không chia hết cho 9 . ( trái với điều (1) )

=> 1 trong 3 số a, b, c, là bội của 3