K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

1/21+1/22+....+1/40>1/40.20=1/2=6/12>6/25

=>S>6/25

24 tháng 6 2021

có ai on ko,chat với tui ik

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you

25 tháng 3 2017

S > 1/3

25 tháng 3 2017

ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)

thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)

vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)

14 tháng 3 2017

bít kq nhưng ko thích giải

18 tháng 12 2020

cậu ko giúp cậu ấy thì thôi đừng bảo như thế

9 tháng 10 2021

\(S=1+2+2^2+...+2^{2005}\\ 2S=2+2^2+...+2^{2006}\\ 2S-S=S=2^{2006}-1< 2^{2006}+2^{2004}=2^2\cdot2^{2004}+2^{2004}=5\cdot2^{2004}\)