K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

ta có 1/3=10/30

1/21+1/22+...+1/30 có 10 p/số

mà 1/21>1/30

1/22>1/30

....

1/29>1/30

1/30=1/30

=>1/21+..1/30>1/30+....1/30 có 10 phân số 

=>1/21+...1/30>1/3

23 tháng 4 2017

Ta có: \(\frac{1}{21}< \frac{1}{30}\)

\(\frac{1}{22}< \frac{1}{30}\)

......

\(\frac{1}{29}< \frac{1}{30}\)

\(\Rightarrow S< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 p/s)
\(\Rightarrow S< \frac{1}{30}.10=\frac{10}{30}=\frac{1}{3}\)

Vậy S < 1/3

23 tháng 2 2020

Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)

\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)

Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)

Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)Hãy so sánh S và \(\frac{1}{2}\)Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)Bài 4: Cho tổng...
Đọc tiếp

Bài 1: Cho A= \(\frac{2011}{2012}\)\(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)

Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)

Hãy so sánh S và \(\frac{1}{2}\)

Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng A>1

Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Bài 6: Chứng tỏ rằng

D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1

Bài 7: 

C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)

Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm

4
10 tháng 6 2016

sorry,quá dài

10 tháng 6 2016

Đề bài 7 có sai gì không bạn?

6 tháng 3 2018

S = 1/21 + 1/22 + ... + 1/30 

Số lượng số của S là : 

( 30 - 21 ) : 1 + 1 = 10 ( số ) 
Ta có : 1/21 > 1/30 , 1/22 > 1/30 , ... 1/29 > 1/30 , 1/30 = 1/30

=> 1/21 + 1/22 + ...+ 1/30 ( 10 số ) > 1/30 + 1/30 + ...+ 1/30 ( 10 số ) 

=>         S > 1/30 . 10

=>         S > 1/3

Chúc bạn học giỏi !!!! 

6 tháng 3 2018

Ta có :

1/21 > 1/30

1/22 > 1/30

.........

1/29 > 1/30

=> S > 1/30 + 1/30 + ...... + 1/30 ( có 10 phân số 1/30 )

        = 10/30 = 1/3

=>S > 1/3

Tk mk nha

26 tháng 4 2015

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2014}}\)

\(\Rightarrow A

6 tháng 9 2016

A < 1

xin lỗi mình không biết cách viết phân số!!!!

nha!!!!

29 tháng 8 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

\(A>10.\frac{1}{20}+10.\frac{1}{30}\)

\(A>\frac{1}{2}+\frac{1}{3}\)

\(A>\frac{5}{6}\)

Vậy \(A>\frac{5}{6}\)

Chúc bạn học tốt ~ 

29 tháng 8 2018

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)

\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)

\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)

\(A>\frac{1}{20}\times10+\frac{1}{30}\times10\)

\(A>\frac{1}{2}+\frac{1}{3}\)

\(A>\frac{5}{6}\)

Vậy \(A>\frac{5}{6}\)

13 tháng 4 2018

Ta có : 

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

Chúc bạn học tốt ~ 

13 tháng 4 2018

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

\(\Leftrightarrow A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{1}{2}-\frac{1}{100}\)

\(\Leftrightarrow A=\frac{49}{100}\)

Vậy A=\(\frac{49}{100}\)

6 tháng 6 2017

B = \(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)

B = \(\frac{-3}{4}.\frac{-8}{9}...\frac{-99}{100}\)

B = \(-\left(\frac{3}{4}.\frac{8}{9}...\frac{99}{100}\right)\)

B = \(-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)

B = \(-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)

B = \(-\left(\frac{1}{10}.\frac{11}{2}\right)\)

B = \(\frac{-11}{20}\)

Vì  \(\frac{11}{20}>\frac{11}{21}\)nên \(\frac{-11}{20}< \frac{-11}{21}\)

Vậy \(B< \frac{-11}{21}\)