K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

B = \(\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)...\left(\frac{1}{100}-1\right)\)

B = \(\frac{-3}{4}.\frac{-8}{9}...\frac{-99}{100}\)

B = \(-\left(\frac{3}{4}.\frac{8}{9}...\frac{99}{100}\right)\)

B = \(-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{9.11}{10.10}\right)\)

B = \(-\left(\frac{1.2...9}{2.3...10}.\frac{3.4...11}{2.3...10}\right)\)

B = \(-\left(\frac{1}{10}.\frac{11}{2}\right)\)

B = \(\frac{-11}{20}\)

Vì  \(\frac{11}{20}>\frac{11}{21}\)nên \(\frac{-11}{20}< \frac{-11}{21}\)

Vậy \(B< \frac{-11}{21}\)

17 tháng 11 2015

\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)......\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)

\(-\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{80}{81}.\frac{99}{100}\)

=\(-\frac{1.3.2.4.3.5..............8.10.9.11}{2^2.3^2.4^2.......10^2}=-\frac{\left(1.2.3.....9\right)\left(3.4.5....11\right)}{2.3.4....10.2.3.4.....10}=-\frac{11}{20}\)

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

24 tháng 5 2017

(1-1/3).(1-1/5).(1-1/7).(1-1/9).(1-1/11).(1-1/13).(1-1/2).(1-1/4).(1-1/6).(1-1/8).(1-1/10)

=2/3.4/5.6/7.8/9.10/11.12/13.1/2.3/4.5/6.7/8.9/10

=8/15.48/63.120/143.3/8.35/48.9/10

=384/945.360/1144.315/480

=138240/1081080.315/480

=43545600/518918400=84/1001

24 tháng 5 2017

khó quá

20 tháng 5 2016

\(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)\)

\(=\left(1+1+1\right)+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

\(=3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)\)

Có: \(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}>0\)

\(1+1+1+...+1>0\)

=> \(3+\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{9}+...+\frac{2}{n^2+3n}\right)+\left(1+1+1+...+1\right)>3\)

Hay \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{5}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{2}{n^2+3n}\right)>3\)

6 tháng 2 2017

B=\(\frac{9}{100}\)

13 tháng 2 2017

Dũng, bạn ghi chi tiết cách giải giúp mk nha. Cám ơn bạn nhiều

9 tháng 8 2017

A) \(\frac{1}{2}\cdot\left(\frac{2}{9}+\frac{3}{7}-\frac{5}{27}\right)\) 

\(=\frac{1}{2}\cdot\frac{1}{2}\)

\(=\frac{1}{4}\)

B)   \(\left(\frac{-5}{28}+1.75+\frac{8}{35}\right):\left(-3\frac{9}{20}\right)\)

\(=\left(\frac{-5}{28}+\frac{7}{4}+\frac{8}{35}\right):\frac{-69}{20}\)

\(=\frac{14}{5}:\frac{-69}{20}\)

\(=\frac{-56}{69}\)