K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có BD,CE là trung tuyến và BD cắt CE tại G

=>G là trọng tâm của ΔABC

=>BD=3/2BG; CE=3/2CG

BD+CE=3/2(BG+CG)>3/2BC

26 tháng 1 2018

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

I là trung điểm của GB

K là trung điểm của GC

Do đó: IK là đường trung bình của ΔGBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra DE//IK và DE=IK

 

28 tháng 3 2022

  Ta có G là trọng tâm tam giác ABC (BG=2BD/3 ; CG=2CG/3):

⇒ BD+CE= 3(BG+CG)/2 (1)

   Xét tam giác BGC (trong một tam giác thì tổng hai cạnh luôn lớn hơn cạnh còn lại):

⇒ BG+CG > BC               (2)

    Từ (1) và (2), ta suy ra: BD+CE >3BC/2 ⇔ BD+CE > 12 (cm)

DG+EG=1/3BD+1/3CE=2/3BD=BG>1/2BC