cho tam giaác ABC có đường trung tuyến BD và CE cắt nhau tại G. CM: BD+CE>3/2BC
nhanh lên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
Xét ΔABC có BD,CE là trung tuyến và BD cắt CE tại G
=>G là trọng tâm của ΔABC
=>BD=3/2BG; CE=3/2CG
BD+CE=3/2(BG+CG)>3/2BC