Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: C/m BD+CE>12cm
Xét ΔABC có
BD là đường trung tuyến ứng với cạnh AC(gt)
CE là đường trung tuyến ứng với cạnh AB(gt)
BD cắt CE tại G(gt)
Do đó: G là trọng tâm của ΔBAC(Định lí ba đường trung tuyến của tam giác)
\(\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{3}{2}\cdot BG\\CE=\dfrac{3}{2}\cdot CG\end{matrix}\right.\)
\(\Leftrightarrow BD+CE=\dfrac{3}{2}\cdot\left(BG+CG\right)\)
mà BG+CG>BC(Bđt tam giác trong ΔGBC)
nên \(BD+CE>\dfrac{3}{2}\cdot8=12\left(cm\right)\)(đpcm)
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
Xét ΔABC có BD,CE là trung tuyến và BD cắt CE tại G
=>G là trọng tâm của ΔABC
=>BD=3/2BG; CE=3/2CG
BD+CE=3/2(BG+CG)>3/2BC