3^n+3+3^n+1+2^n+3+2^n+2 chia het cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh n.(n +1).(n + 2) chia hết cho 3
TH1: n chia hết cho 3
=> n.(n + 1).(n + 2) chia hết cho 3
TH2: n chia 3 dư 1
=> (n + 2) chia hết cho 3
=> n.(n + 1).(n + 2) chia hết cho 3
TH3: n chia 3 dư 2
=> (n +1) chia hết cho 3
=> n.(n + 1).(n + 2) chia hết cho 3
Vì n.(n+1).(n+2) là tích 3 số liên tiếp nên có 1 số chia hết cho 3\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\) (1)
Vì n.(n+1) là tích 2 số liên tiếp nên có 1 số chia hết cho 2\(\Rightarrow n.\left(n+1\right)\left(n+2\right)⋮2\) (2)
Từ (1) và (2),vì UCLN(2,3)=1 nên \(n\left(n+1\right)\left(n+2\right)⋮6\)
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...
a) => n+1 thuộc ước của 7
Ư(7)={-1;1;-7;7}
vì n>3 nên n=7
b) =>n+3 thuộc ước của 15
Ư(15)={-1;1;-3;3;-5;5;-15;15}
vì 7 < n < 10 nên n = 15
c) ta có : n+7 = (n+3) +4
mà n+3 chia hết cho n+3
=> 4chia hết cho n+3
=> n+3 thuôc ước của 4
Ư(4)={-1;1;-2;2;-4;4}
=> ta có bảng sau:
n+3 | -1 | 1 | -2 | 2 | -4 | 4 |
n | -4 | -2 | -5 | -1 | -7 | 1 |
= 2(n+2) +2d) ta có : 2n + 6 = ( 2n+4) +2
mà n+2 chia hết cho n+2 nên 2(n+2) cũng chia hết cho n+2
=> 2 phải chia hết cho n+2
=> n+2 thuộc ươc của 2
=> Ư(2)={-1;1;-2;2}
=> ta có bảng sau
n+2 | -1 | 1 | -2 | 2 |
n | -3 | -1 | -4 | 0 |