chứng minh (x-x^2+1)/(x-x^2-1)<1
các bạn giải nhanh dùm mình nhé mình đang cần gấp, cảm ơn mấy bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+x+1)^2+(x-1)^2-2(x^2+x+1)(x-1)
=(x^2+x+1)^2-2(x^2+x+1)(x-1)+(x-1)^2
=[(x^2+x+1)-(x-1)]^2
=(x^2+2)^2.
Ta có: (x-x2+1)/(x-x2-1) - 1
= (x-x2+1)/(x-x2-1) - (x-x2-1)/(x-x2-1)
= (x-x2+1-x+x2+1)/(x-x2-1) = 2/(x-x2-1) = -2/(x2-x+1)
Ta có: x2-x+1 = x2-x+1/4+3/4 = (x - 1/2)2 + 3/4 > 0 với mọi x
Nên (x-x2+1)/(x-x2-1) < 1 (đpcm)
`1/(x+1)-1/(x+2)`
`=(x+2-x-1)/((x+1)(x+2))`
`=1/((x+1)(x+2))(ĐPCM)`
\(\dfrac{1}{x+1}-\dfrac{1}{x+2}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\left(đpcm\right)\)
Bạn ơi đề bài sai nha mik sửa lại đề bài
\(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\)
VT = \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^3\right)^2-1=x^6-1\)
VP = \(\left(x^2-1\right)\left(x^2+x+1\right)=\left(x^2\right)^3-1=x^6-1\)
Ta thấy VT = VP
=> \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\) (đpcm)
Ta có: \(\frac{x-x^2+1}{x-x^2-1}< 1\Leftrightarrow\frac{x-x^2+1}{x-x^2-1}-1< 0\)
\(\Leftrightarrow\frac{x-x^2+1}{x-x^2-1}-\frac{x-x^2-1}{x-x^2-1}< 0\)
\(\Leftrightarrow\frac{2}{x-x^2-1}< 0\Leftrightarrow x-x^2-1< 0\)
\(\Leftrightarrow x^2-x+1>0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đúng với mọi x)
Suy ra đpcm.