Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-x\right)\left(1+x+x^2+...+x^{31}\right)=1-x^{32}\)
\(\left(1-x\right)\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^2\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^4\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^8\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
\(=\left(1-x^{16}\right)\left(1+x^{16}\right)\)
\(=1-x^{32}\)
Ta có đpcm.
Sửa đề: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}=\dfrac{2xy}{x^2+y^2}\)
Ta có: \(\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\left(\dfrac{x^2+y^2}{x^2y^2}-\dfrac{2xy}{x^2y^2}\right):\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}:\dfrac{x^2-2xy+y^2}{\left(xy\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy}{\left(x-y\right)^2}:\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy}{\left(x-y\right)^2}\cdot\dfrac{\left(x-y\right)^2}{x^2+y^2}\)
\(=\dfrac{2xy}{x^2+y^2}\)
Thật đấy ạ, nãy giờ ngồi nháp mãi vẫn không hiểu sao đề bắt chứng minh nó bằng 1 được:(
`1/(x+1)-1/(x+2)`
`=(x+2-x-1)/((x+1)(x+2))`
`=1/((x+1)(x+2))(ĐPCM)`
\(\dfrac{1}{x+1}-\dfrac{1}{x+2}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{\left(x+1\right)\left(x+2\right)}\left(đpcm\right)\)