cho tam giác ABC vuông tại A , tia phân giác của ABC cắt AC tại M . Gọi N là hình chiếu của M trên BC . a, CM tam giác ABM = tam giác NBM và MB là tia phân giác của AMN . b, Vẽ NK // BM [ K thuộc MC ] . CM BMN = MNK và tam giác MNK cân. Có vẽ hình nha mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔABM=ΔNBM
Suy ra: \(\widehat{AMB}=\widehat{NMB}\)
hay MB là tia phân giác của góc AMN
b: Ta có: MK//BM
nên \(\widehat{BMN}=\widehat{MNK}\)
Xét \(\Delta ABM\) và \(\Delta NBM\)
\(\widehat{MAB}=\widehat{MNB}=90^o\)
\(MB\) chung
\(\widehat{MBA}=\widehat{MBN}\) (vì \(BM\) là tia phân giác của \(\widehat{ABN}\))
suy ra: \(\Delta ABM=\Delta NBM\) (Cạnh huyền-góc nhọn)
\(\Rightarrow\widehat{AMB}=\widehat{NMB}\) (Hai góc tương ứng)
\(\Rightarrow MB\) là tia phân giác của \(\widehat{AMN}\)
Vì \(NK\)//\(BM\) nên \(\widehat{BMN}=\widehat{MNK}\) (hai góc so le trong)
Và \(\widehat{BMA}=\widehat{NKM}\) (đồng vị)
Mà \(\widehat{AMB}=\widehat{NMB}\) (cmt)
Suy ra: \(\widehat{MNK}=\widehat{NKM}\) \(\Rightarrow\Delta MNK\) cân tại \(M\) (đpcm)
a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>góc AMB=góc NMB
=>MB là phân giác của góc AMN
b: NK//BM
=>góc BMN=góc KNM
=>góc KNM=góc AMB
=>góc MNK=góc MKN
=>ΔKMN cân tại M
Bạn tự vẽ hình nhé.
a) Xét tam giác \(ABM\)và tam giác \(NBM\)có:
\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)
\(MB\)cạnh chung
\(\widehat{MBA}=\widehat{MBN}\)(vì \(BM\)là tia phân giác \(\widehat{ABN}\))
suy ra \(\Delta ABM=\Delta NBM\)(cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{AMB}=\widehat{NMB}\)(Hai góc tương ứng)
suy ra \(MB\)là tia phân giác góc \(AMN\).
b) Vì \(NK//BM\)nên \(\widehat{BMN}=\widehat{MNK}\)(hai góc so le trong)
và \(\widehat{BMA}=\widehat{NKM}\)(Hai góc đồng vị)
mà \(\widehat{AMB}=\widehat{NMB}\)(theo a))
suy ra \(\widehat{MNK}=\widehat{NKM}\)suy ra tam giác \(MNK\)cân tại \(M\).
c) Vì \(\Delta ABM=\Delta NBM\)nên
+) \(MN=MA\)(Hai cạnh tương ứng) suy ra \(M\)thuộc đường trung trực của \(AN\).
+) \(BN=BA\)(Hai cạnh tương ứng) suy ra \(B\)thuộc đường trung trực của \(AN\).
suy ra \(BM\)là đường trung trực của \(AN\)\(\Rightarrow BM\perp AN\).
mà \(NK//BM\)suy ra \(AN\perp NK\).
Trong tam giác vuông \(ANK\): \(AN< AK\)(cạnh góc huyền lớn hơn cạnh góc vuông).
d) \(K\)là trung điểm \(MC\)suy ra \(MK=\frac{1}{2}MC\)mà \(MN=MK\)(do tam giác \(MNK\)cân tại \(M\))
suy ra \(MN=\frac{1}{2}MC\).
Trong tam giác vuông, cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\).
Do đó \(\widehat{C}=30^o\).
Vậy tam giác vuông \(ABC\)cần thêm điều kiện \(\widehat{C}=30^o\).
a) Ta có: $\widehat{ABM} = \widehat{NBM}$ (vì $BN = BA$) và $\widehat{BMA} = \widehat{NMB}$ (vì BM là phân giác của $\widehat{B}$). Vậy tam giác $ABM$ và tam giác $NBM$ có hai góc bằng nhau nên chúng đồng dạng.
b) Ta có $BN = BA$, suy ra tam giác $ABN$ đều, do đó $\widehat{NAB} = 60^\circ$. Ta có thể tính được $\widehat{BAC} = 90^\circ - \widehat{CAB} = 90^\circ - \widehat{ABN} = 30^\circ$. Khi đó, $\widehat{AMC} = \widehat{A} + \widehat{BAC} = 90^\circ + 30^\circ = 120^\circ$.
Do đó, tam giác $AMC$ là tam giác cân tại $A$ vì $\widehat{AMC} = 120^\circ = 2\cdot \widehat{ABC}$ (do tam giác $ABC$ vuông tại $A$). Khi đó, $AM = MC$.
c) Ta có $\widehat{CAB} = 30^\circ$, nên tia đối của $AB$ là tia $AH$ cũng là phân giác của $\widehat{A}$. Gọi $E'$ là trên $AH$ sao cho $AE' = CN$. Khi đó, ta có thể chứng minh $E'$ trùng với $E$, tức là $E'$ nằm trên đoạn thẳng $CE$ và $CE' = EI$.
Đặt $x = BE = BC$. Ta có $AN = AB = BN = x$, do đó tam giác $ABN$ đều và $\widehat{ANB} = 60^\circ$. Khi đó, ta có $\widehat{A} + \widehat{M} + \widehat{N} = 180^\circ$, hay $\widehat{M} + \widehat{N} = 90^\circ$.
Ta có $\dfrac{AE'}{CE'} = \dfrac{AN}{CN} = 1$, do đó $AE' = CE' = x$. Khi đó, tam giác $ACE'$ đều và $\widehat{ACE'} = 60^\circ$. Ta có thể tính được $\widehat{C} = 180^\circ - \widehat{A} - \widehat{B} = 60^\circ$, nên tam giác $ABC$ đều và $AC = x$.
Do $AM = MC$, ta có $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2}$. Ta cũng có $\widehat{B} + \widehat{N} + \widehat{C} = 180^\circ$, hay $\widehat{N} = 180^\circ - \widehat{A} - \widehat{B} - \widehat{B} - \widehat{C}$
Do đó, $\widehat{N} = 180^\circ - \widehat{A} - 90^\circ - \widehat{C} = 90^\circ - \widehat{B}$
Vậy $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2} = \dfrac{\widehat{B}}{2}$
Suy ra tam giác ABM và NBM có cùng một góc ở đỉnh M, và hai góc còn lại lần lượt bằng $\dfrac{\widehat{A}}{2}$ và $\dfrac{\widehat{C}}{2}$, nên chúng đồng dạng. Do đó, ta có $ABM = NBM$.
Về phần b, do $AM = MC$, ta có $AMC$ là tam giác cân tại $M$, hay $BM$ là đường trung trực của $AC$. Vì $BN$ là đường phân giác của $\widehat{B}$, nên ta có $BM$ cũng là đường phân giác của tam giác $\triangle ABC$. Do đó, $BM$ là đường phân giác của $\widehat{BAC}$, hay $\widehat{BAM} = \widehat{MAC} = \dfrac{\widehat{BAC}}{2}$. Vậy $\widehat{BAM} + \widehat{ABM} = \dfrac{\widehat{BAC}}{2} + \dfrac{\widehat{A}}{2} = 90^\circ$, hay tam giác $\triangle ABM$ là tam giác vuông tại $B$.
Về phần c, vì $AE = CN$, ta có tam giác $\triangle AEC$ là tam giác cân tại $E$, nên $EI$ là đường trung trực của $AC$. Do đó, $\widehat{BIM} = \widehat{BIE} + \widehat{EIM} = \widehat{BCM} + \widehat{CAM} = \dfrac{\widehat{B}}{2} + \dfrac{\widehat{C}}{2}$. Tuy nhiên, ta đã chứng minh được $\widehat{MAC} = \dfrac{\widehat{B}}{2}$, nên $\widehat{BIM} = \widehat{MAC} + \dfrac{\widehat{C}}{2}$. Do đó, $B, M, I$ thẳng hàng.