Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại A và ΔNBM vuông tại N có
BM chung
\(\widehat{ABM}=\widehat{NBM}\)
Do đó: ΔABM=ΔNBM
Suy ra: \(\widehat{AMB}=\widehat{NMB}\)
hay MB là tia phân giác của góc AMN
b: Ta có: MK//BM
nên \(\widehat{BMN}=\widehat{MNK}\)
Xét \(\Delta ABM\) và \(\Delta NBM\)
\(\widehat{MAB}=\widehat{MNB}=90^o\)
\(MB\) chung
\(\widehat{MBA}=\widehat{MBN}\) (vì \(BM\) là tia phân giác của \(\widehat{ABN}\))
suy ra: \(\Delta ABM=\Delta NBM\) (Cạnh huyền-góc nhọn)
\(\Rightarrow\widehat{AMB}=\widehat{NMB}\) (Hai góc tương ứng)
\(\Rightarrow MB\) là tia phân giác của \(\widehat{AMN}\)
Vì \(NK\)//\(BM\) nên \(\widehat{BMN}=\widehat{MNK}\) (hai góc so le trong)
Và \(\widehat{BMA}=\widehat{NKM}\) (đồng vị)
Mà \(\widehat{AMB}=\widehat{NMB}\) (cmt)
Suy ra: \(\widehat{MNK}=\widehat{NKM}\) \(\Rightarrow\Delta MNK\) cân tại \(M\) (đpcm)
a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>góc AMB=góc NMB
=>MB là phân giác của góc AMN
b: NK//BM
=>góc BMN=góc KNM
=>góc KNM=góc AMB
=>góc MNK=góc MKN
=>ΔKMN cân tại M
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)
b) Xét \(\Delta ABM\) vuông tại A và \(\Delta KBM\) vuông tại K:
\(BMchung.\)
\(\widehat{ABM}=\widehat{KBM}\) (BM là phân giác góc ABC).
\(\Rightarrow\Delta ABM\) \(=\Delta KBM\left(ch-gn\right).\)
\(\Rightarrow AB=KB.\)
\(\Rightarrow\Delta ABK\) cân tại B.
c) Xét \(\Delta ABK\) cân tại B:
\(\widehat{AKB}=\dfrac{180^o-\widehat{B}}{2}\left(1\right).\)
Xét \(\Delta BDC:\)
DK là đường cao \(\left(DC\perp BC\right).\)
CA là đường cao \(\left(CA\perp AB\right).\)
Mà M là giao điểm của DK và CA.
\(\Rightarrow\) M là trực tâm.
\(\Rightarrow\) BM là đường cao.
Xét \(\Delta DBC:\)
BM là đường cao (cmt).
BM là đường phân giác (gt).
\(\Rightarrow\Delta DBC\) cân tại B.
\(\widehat{DCB}=\dfrac{180^o-\widehat{B}}{2}\left(2\right).\)
Từ (1) (2) \(\Rightarrow\text{}\text{}\widehat{AKB}=\widehat{DCB}.\)
\(\Rightarrow AK//CD.\)
a) Xét ΔABCΔABC vuông tại A:
BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).
b) Xét ΔABMΔABM vuông tại A và ΔKBMΔKBM vuông tại K:
BMchung.BMchung.
ˆABM=ˆKBMABM^=KBM^ (BM là phân giác góc ABC).
⇒ΔABM⇒ΔABM =ΔKBM(ch−gn).=ΔKBM(ch−gn).
⇒AB=KB.⇒AB=KB.
⇒ΔABK⇒ΔABK cân tại B.
c) Xét ΔABKΔABK cân tại B:
ˆAKB=180o−ˆB2(1).AKB^=180o−B^2(1).
Xét ΔBDC:ΔBDC:
DK là đường cao (DC⊥BC).(DC⊥BC).
CA là đường cao (CA⊥AB).(CA⊥AB).
Mà M là giao điểm của DK và CA.
⇒⇒ M là trực tâm.
⇒⇒ BM là đường cao.
Xét ΔDBC:ΔDBC:
BM là đường cao (cmt).
BM là đường phân giác (gt).
⇒ΔDBC⇒ΔDBC cân tại B.
ˆDCB=180o−ˆB2(2).DCB^=180o−B^2(2).
Từ (1) (2) ⇒ˆAKB=ˆDCB.⇒AKB^=DCB^.
⇒AK//CD.
Bạn tự vẽ hình nhé.
a) Xét tam giác \(ABM\)và tam giác \(NBM\)có:
\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)
\(MB\)cạnh chung
\(\widehat{MBA}=\widehat{MBN}\)(vì \(BM\)là tia phân giác \(\widehat{ABN}\))
suy ra \(\Delta ABM=\Delta NBM\)(cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{AMB}=\widehat{NMB}\)(Hai góc tương ứng)
suy ra \(MB\)là tia phân giác góc \(AMN\).
b) Vì \(NK//BM\)nên \(\widehat{BMN}=\widehat{MNK}\)(hai góc so le trong)
và \(\widehat{BMA}=\widehat{NKM}\)(Hai góc đồng vị)
mà \(\widehat{AMB}=\widehat{NMB}\)(theo a))
suy ra \(\widehat{MNK}=\widehat{NKM}\)suy ra tam giác \(MNK\)cân tại \(M\).
c) Vì \(\Delta ABM=\Delta NBM\)nên
+) \(MN=MA\)(Hai cạnh tương ứng) suy ra \(M\)thuộc đường trung trực của \(AN\).
+) \(BN=BA\)(Hai cạnh tương ứng) suy ra \(B\)thuộc đường trung trực của \(AN\).
suy ra \(BM\)là đường trung trực của \(AN\)\(\Rightarrow BM\perp AN\).
mà \(NK//BM\)suy ra \(AN\perp NK\).
Trong tam giác vuông \(ANK\): \(AN< AK\)(cạnh góc huyền lớn hơn cạnh góc vuông).
d) \(K\)là trung điểm \(MC\)suy ra \(MK=\frac{1}{2}MC\)mà \(MN=MK\)(do tam giác \(MNK\)cân tại \(M\))
suy ra \(MN=\frac{1}{2}MC\).
Trong tam giác vuông, cạnh góc vuông bằng \(\frac{1}{2}\)cạnh huyền thì góc đối diện với cạnh góc vuông đó bằng \(30^o\).
Do đó \(\widehat{C}=30^o\).
Vậy tam giác vuông \(ABC\)cần thêm điều kiện \(\widehat{C}=30^o\).