K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

ngu rồi bạn ạ

24 tháng 1 2019

KQ là tập hợp rỗng (vô lí)

Tự CM nha

Mik ko rảnh

Sorry

23 tháng 3 2015

Phân tích thành nhân tử:

a5b-ab5=a5b-ab-ab2+ab=ab(a4-1)-ab(b2-1)=ab(a2-1)(a2+1)-ab(b2-1)(b2+1)=ab(a-1)(a+1)(a2+1)-ab(b-1)(b+1)(b2+1)=ab(a-1)(a+1)(a2-4+5)-ab(b-1)(b+1)(b2-4+5)=ab(a-1)(a+1)(a-2)(a+2)+5ab(a-1)(a+1)-ab(b-1)(b+1)(b-2)(b+2)-5ab(b-1)(b+1)

Ta Thấy:(a-2)(a-1)a(a+1)(a+2) là 5 số TN liên tiếp

=>(a-2)(a-1)ab(a+1)(a+2)chia hết cho 30(trong 5 số TN liên tiếp có 1 số chia hết cho 2 cho 3 cho 5)

TT=>a(a+1)(a-1) chia hết cho 6=>5ab(a-1)(a+1)chia hết cho 30

cmtt =>đpcm

25 tháng 11 2017

tại sao bên kia là ab^5 mà bên này lại ab^2

6 tháng 7 2016

\(m=a^5b-ab^5=a^5b-ab-ab^5+ab=b\left(a^5-a\right)-a\left(b^5-b\right)\)

Ta cần CM a5-a chia hết cho 30

Thật vậy,\(a^5-a=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)\)

Vì (a-1)a(a+1) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1

=>(a-1)a(a+1) chia hết cho 6

Lại có (6;5)=1

=>5(a-1)a(a+1) chia hết cho 30

Mặt khác (a-2)(a-1)a(a+1)(a+2) là h của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1

=>(a-2)(a-1)a(a+1)(a+2) chia hết cho 30

=>a5-a chia hết cho 30

=>b(a5-a) chia hết cho 3

CM tương tự với a(b5-b) ta sẽ có đpcm

6 tháng 7 2016

b(a5-a) chia hết cho 30 nhé bn

13 tháng 6 2016

ko pit làm

9 tháng 9 2016

Dễ thế mà cũng không biết. Ngu

3 tháng 4 2020

Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)

Đặt \(b_i=-a_i\left(1\le i\le51\right)\)

Xét 102 số : \(a_i\)và \(b_i\)

Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)

=> \(a_i+a_j⋮100\)