Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích thành nhân tử:
a5b-ab5=a5b-ab-ab2+ab=ab(a4-1)-ab(b2-1)=ab(a2-1)(a2+1)-ab(b2-1)(b2+1)=ab(a-1)(a+1)(a2+1)-ab(b-1)(b+1)(b2+1)=ab(a-1)(a+1)(a2-4+5)-ab(b-1)(b+1)(b2-4+5)=ab(a-1)(a+1)(a-2)(a+2)+5ab(a-1)(a+1)-ab(b-1)(b+1)(b-2)(b+2)-5ab(b-1)(b+1)
Ta Thấy:(a-2)(a-1)a(a+1)(a+2) là 5 số TN liên tiếp
=>(a-2)(a-1)ab(a+1)(a+2)chia hết cho 30(trong 5 số TN liên tiếp có 1 số chia hết cho 2 cho 3 cho 5)
TT=>a(a+1)(a-1) chia hết cho 6=>5ab(a-1)(a+1)chia hết cho 30
cmtt =>đpcm
a, Ta có:
Đặt a=2k, b=2k+1
Suy ra ab(a+b)=2k(2k+1)(2k+2k+1) chia hết cho 2
Đặt a=2k+1; b=2k
Suy ra ab(a+b)=(2k+1)2k(2k+2k+1) chia hết cho 2
Đặt a=2k;b=2k
Suy ra ab(a+b)=2k.2k.4k chia hết cho 2
Đặt a=2k+1;b=2k+1
Suy ra ab(a+b)=(2k+1)(2k+1)(2k+1+2k+1)=2(2k+1)(2k+1)(2k+1) chia hết cho 2
Vậy ab(a+b) chia hết cho 2 với mọi a;b
Câu khác tương tự
câu c) ab+ba=10a+b+10b+a
=11a+11b
=11(a+b)
vì 11 chia hết cho 11 nên 11(a+b) chia hết cho 11
vậy ab+ ba chia hết cho 11