K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

a) Để \(\left(x+1\right)^2\left(y-6\right)=0\)

thì \(\orbr{\begin{cases}x+1=0\\y^2-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=\sqrt{6}\end{cases}}}\)

b) \(x^2-12x+7>7\Leftrightarrow x^2-12x>0\)

  \(\Leftrightarrow x\left(x-12\right)>0\)

  \(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\x-12>0\end{cases}}\\\hept{\begin{cases}x< 0\\x-12< 0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>12\\x< 0\end{cases}}\)

7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

7 tháng 1 2021

a, Phương trình f(x,y) =0 <=> (2x-3y+7)(3x+2y-1) =0 nhận x=-3 làm nghiệm nên ta có:(-6-3y +7)(-9 + 2y -1)=0

<=> (1 - 3y)(2y - 10) =0 <=> 1 - 3y=0 hoặc 2y - 10 =0

* 1-3y=0 <=> y=1/3

* 2y - 10= 0 <=> y=5

vậy phương trình nhận x=-3 thì y=1/3 hoặc y=5

b, Phương trình nhận y=2 làm nghiệm nên ta có:

(2x - 6 + 7)(3x+ 4 - 1)=0

<=> (2x + 1)(3x + 3) =0 <=> 2x + 1=0 hoặc 3x + 3 = 0

<=> x=-1/ 2 hoặc x=-1

vậy phương trình nhận y=2 làm nghiệm thì x=-1/2 hoặc x=-1

22 tháng 3 2021

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

8 tháng 5 2016

A = x +y +1 => A - 1 = x +y.

Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0

=> (A +1)(A +4) <= 0 => - 1 <= A <= -4

A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1

A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4

Vậy minA = -1 khi x = -1, y = 0

maxA = -4 khi x = -4, y = 0

4 tháng 7 2021

a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)

Vậy g/t P không phụ thuộc vào biến.

b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)

Vậy g/t Q không phụ thuộc vào biến.

b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)

\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)

\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6\)

=-8

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu cặp...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0