Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
\(P=0\)
=> P không phụ thuộc vào giá trị của biến x
b) \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(Q=x^3-2x^2+2x-1-x^3-2x^2-2x-1+6x^2-6\)
\(Q=2x^2-8\)
=> Q phụ thuộc vào giá trị của biến x
\(P=\left(x+2+x-2\right)\left(x^2+4x+4-x^2+4+x^2-4x+4\right)-2x^3-24x\)
\(=2x.\left(x^2+16\right)-2x^3-24x\)
\(=2x^3+32x-2x^3-24x\)
=8x
A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)
= x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x
= x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x
= (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)
= -6x + 16
=> có phụ thuộc vào biến x
B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)
= 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)
= 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7
=> không phụ thuộc vào biến x
\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)
\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)
\(=-6x+16\)
Vậy biểu thức A phụ thuộc vào biến x
\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8x^3-8-8x^3+1\)
\(-7\)
Vậy biểu thức B không phụ thuộc vào biến x
( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x < đã sửa đề >
= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) + 3x2 - 3x
= x3 - 1 - x3 + 1
= 0 ( đpcm )
Bài làm:
a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\)=> không phụ thuộc GT biến
b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)
\(=2x^2+6x-7x-2x^2+35+10x\)
\(=9x+35\)=> có phụ thuộc GT biến
c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)
\(=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x\)
\(=0\)=> không phụ thuộc GT biến
cho mk hỏi tại sao chỗ (3x+18)(x-1) bạn lại ra được 3x2+3x -18x+18
a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)
Vậy g/t P không phụ thuộc vào biến.
b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)
Vậy g/t Q không phụ thuộc vào biến.
b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)
\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6\)
=-8